

MF40 PROVIDENCE

Rapport de Projet

Guillaume Note | Zakaria M'sir | Florian Poncet-Coulibaly | Ahmed Ouaguini

SOMMAIRE

INTRODUCTION DU PROJET	1
Présentation de l'équipe	1
Choix de l'expérience	1
CONCEPTION	3
Structure interne	3
Coiffe et caméra	3
Bloc moteur et ailerons	4
Système de récupération	4
Contrôle du roulis	4
Electronique	5
C'SPACE 2025	8
Objectifs	8
Difficultés et solutions	10
RESULTATS	12
Lancement	12
Caméra 360°	15
Contrôle du roulis	16
ANNEXES	18

INTRODUCTION DU PROJET

Présentation de l'équipe

Commençons par une présentation de l'équipe du projet de mini-fusée *Providence*. Nous sommes quatre étudiants en 2^e année à l'ESTACA, école d'ingénieurs spécialisée dans les transports, dans notre cas l'aéronautique et le spatial : Guillaume Note, Zakaria M'Sir, Ahmed Ouaguini et Florian Poncet-Coulibaly.

Le projet est mené au sein de l'association ESO (Estaca Space Odyssey), présente sur les campus de Paris et de Laval. Cette association rassemble plus de 180 étudiants et étudiantes passionnés de spatial, et nous avons ainsi pu bénéficier de ses espaces de travail et de son matériel.

Le projet s'étend sur toute l'année scolaire 2024-2025, en parallèle de nos études, ce qui implique un planning délicat, devant s'accommoder des examens et autres échéances académiques.

Dès ses débuts en septembre 2024, le projet a pour vocation de lancer une minifusée au C'Space, campagne de lancement de fusées de toute taille organisée par Planète-Sciences avec le soutien du CNES. La campagne 2025 se déroule du 5 au 12 juillet au Camp de Ger à Tarbes, lieu d'entraînement des principaux régiments de parachutistes de l'armée française.

Nous avions des échéances claires, liées aux RCE, réunions de suivi du projet en vue du lancement au C'Space 2025 :

- 16 novembre 2024 RCE 1 : Définition du projet et choix des expériences
- 8 et 9 février 2025 RCE 2 : Conception finale du projet
- 14 et 15 juin 2025 RCE 3 : Fabrication et assemblage complétés, le projet est presque prêt à être lancé
- 5 au 12 juillet 2025 C'Space 2025 : Lancement de la fusée

Choix de l'expérience

Pour notre expérience, nous avons choisi de nous concentrer sur la stabilisation en roulis. Ce choix est motivé par notre volonté d'embarquer une caméra à bord de la fusée afin de capturer des images à la fois exploitables et esthétiques tout au long du vol. En effet, sans stabilisation, la rotation naturelle de la fusée autour de son axe longitudinal entraîne des mouvements rapides rendant les vidéos difficiles à exploiter.

C'Space 2025

La mise en place d'un système de stabilisation en roulis permet donc non seulement d'améliorer la qualité des prises de vue, mais aussi de mettre en avant une problématique technique directement liée à l'ingénierie spatiale : le contrôle d'attitude. Ce choix offre ainsi une double valeur ajoutée, à la fois scientifique et pédagogique : obtenir des images claires pour la communication autour du projet, tout en développant une solution technologique illustrant un enjeu réel rencontré dans le domaine des lanceurs et satellites.

La mise en œuvre de cette expérience a présenté plusieurs difficultés. Pour la stabilisation en roulis, il a d'abord fallu définir le positionnement optimal des ailettes (peu de place dans la fusée, surtout au niveau du bloc moteur), puis concevoir un système mécanique permettant de relier deux ailettes à un seul servomoteur, en raison de la limitation du contrôle à l'axe de roulis, sans action possible sur les autres axes.

Concernant la caméra, les principaux enjeux ont porté sur le choix de son emplacement, dans la coiffe ou dans un compartiment intégré au corps de la fusée, ainsi que sur la sélection d'un matériau transparent permettant de réaliser une coiffe garantissant à la fois la protection du dispositif et la qualité des images.

CONCEPTION

Structure interne

L'utilisation d'un treillis constitué de trois tiges filetées de 6 mm de diamètre en acier s'est rapidement imposée comme une solution efficace. Ce choix permet à la fois une bonne reprise des efforts mécaniques tout en restant léger. Les bagues en PLA sont assemblées sur ces tiges à l'aide d'écrous M6, assurant la fixation des différents mécanismes et composants tout en jouant un rôle structurel essentiel en répartissant les charges dans l'ensemble de la fusée.

Du haut vers le bas, les bagues sont :

- <u>Bague supérieure</u>: relie la caméra et la coiffe aux tiges et à la peau de la fusée.
- <u>Bague trappe</u>: accueille tout le mécanisme d'éjection de la trappe, la carte électronique et le point de fixation supérieur de la trappe.
- <u>Bague plan incliné</u>: positionnée au centre de gravité, elle sert d'attache pour le parachute et de point de fixation inférieur de la trappe.
- <u>Bague roulis</u>: concentre le mécanisme de roulis, avec les ailettes, les engrenages et la carte électronique, s'emboitant dans la bague inférieure.
- <u>Bague inférieure</u>: contient le compartiment moteur, les fixations des ailerons et des tiges.

Les forces principales identifiées à l'échelle du modèle sont le poids et la poussée du moteur. Des calculs de résistance des matériaux en traction et compression ont permis de dimensionner les tiges et les bagues. Le choix de l'acier pour les tiges assure une rigidité maximale, avec une déformation théorique inférieure à 2 %, conforme au cahier des charges. Cette structure a permis d'alléger la peau en composite de fibre de verre, qui n'a plus qu'un rôle aérodynamique.

Les bagues ont été conçues sur SolidWorks puis imprimées en PLA, une solution légère, simple à mettre en œuvre et facilement disponible.

Coiffe et caméra

Pour la caméra, nous avons choisi une 360° Ricoh Theta S d'occasion. Son intégration s'est faite dans une coiffe transparente, conçue à partir d'un tube en plexiglas (Ø ext. 80 mm, Ø int. 76 mm) et d'une demi-sphère en plastique (boule de Noël, Ø 80 mm), collée au tube. Plusieurs solutions ont été envisagées : impression 3D en PLA transparent, thermoformage d'une plaque de plexiglas ou assemblage

d'éléments existants. Seule la dernière approche a été retenue, offrant une coiffe simple, légère et parfaitement adaptée aux besoins de l'expérience.

Bloc moteur et ailerons

Le bloc moteur assure la fixation du moteur et des ailerons, jouant un rôle crucial dans l'alignement des composants, ainsi que le point de départ des tiges. Plusieurs itérations de design ont permis d'optimiser sa forme pour garantir rigidité, légèreté et facilité d'assemblage tout en respectant le cahier des charges, notamment les dimensions du moteur Pandora Pro 24.

Le bloqueur de moteur, une petite pièce en aluminium, est fixé avec des tiges filetées Ø 4 mm et des écrous papillons M4 pour maintenir le moteur à la fin de la poussée.

Les ailerons, réalisés en contreplaqué, ont été dimensionnés via le tableau Stabtraj et fabriqués en double pour disposer d'une réserve en cas d'accident. Ils se logent dans des rainures du bloc moteur et sont vissés pour assurer leur maintien.

Système de récupération

Le mécanisme d'éjection de la trappe combine :

- un servomoteur actionnant une patte en PLA sur mesure,
- des ressorts qui poussent la trappe lors de la libération,
- un compte à rebours Arduino déclenché via un fil relié au pas de tir (GND et pin Arduino).

Deux petites pièces en PLA fixées sur la trappe complètent le dispositif : un logement pour la patte du servo et les ressorts en haut, et une cale en bas pour maintenir la trappe. Plusieurs bagues guident l'ensemble : bague plan incliné, bague supérieure et bague trappe. Le parachute, en forme de croix, se déploie sous voile après l'ouverture de la trappe.

Contrôle du roulis

Le contrôle du roulis repose sur deux ailettes de 50×60 mm, disposées symétriquement et liées mécaniquement par un système d'engrenages contrôlé par un servomoteur. Ce mécanisme permet de synchroniser les ailettes et d'agir uniquement sur l'axe de roulis, sans interférer avec le tangage ou le lacet.

Les ailettes sont vissées sur des pièces en PLA pivotantes intégrées à la bague roulis. Leur fonctionnement repose sur des calculs théoriques, à confirmer par des tests pratiques.

Electronique

L'électronique a été conçue sur mesure pour gérer :

- L'éjection de la trappe : déclenchement automatique au moment de l'apogée pour un déploiement optimal du parachute.
- Le contrôle du roulis : pilotage des ailettes via un gyroscope et servomoteur.

Deux cartes identiques (95×50 mm, épaisseur ~2 cm) ont été réalisées sur EasyEDA, centrées autour d'un Arduino Nano. La carte parachute intègre 3 LED, un interrupteur, un lecteur de carte SD, un régulateur de tension et les condensateurs nécessaires, tandis que la carte roulis ajoute un gyroscope pour le contrôle de l'axe.

Le code en C gère la lecture des capteurs, le traitement des données et le pilotage des actionneurs, permettant un fonctionnement autonome et fiable lors du vol.

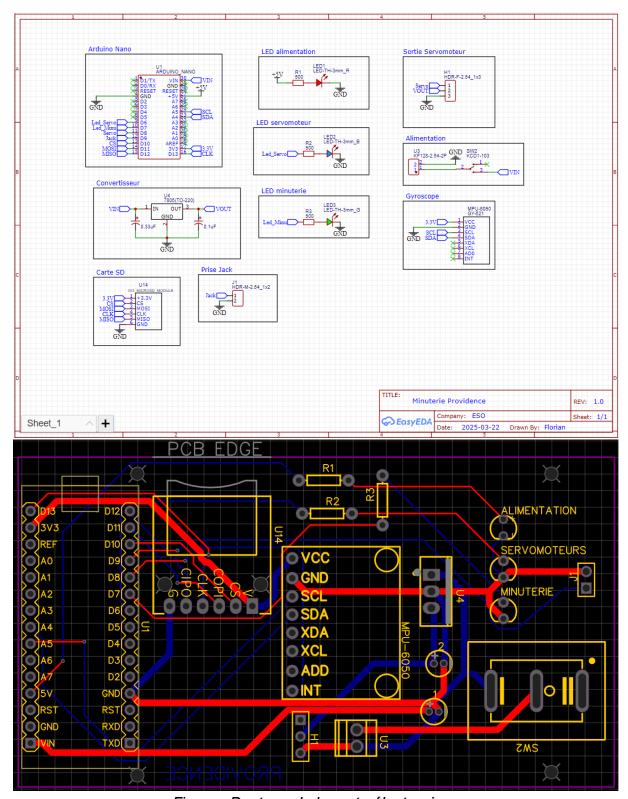


Figure : Routage de la carte électronique

Figure : Intégration de notre carte (parachute) dans la fusée.

C'SPACE 2025

Objectifs

Après la RCE 3 et notre préqualification pour le C'Space 2025 — une vérification de la fusée pour confirmer qu'elle pouvait participer au vol — plusieurs modifications restaient à effectuer avant le lancement. Il s'agissait principalement de finaliser les cartes électroniques et de vérifier leur fonctionnement. Bien que leur conception soit terminée, les programmes et composants avaient été testés sur une Arduino Mega. À cause de retards de livraison, l'assemblage et la soudure des cartes ont dû être réalisés après la RCE 3.

Figure : Photo de la mini-fusée Providence pré RCE 3

Un autre axe de travail concernait l'éjection du parachute. Nous avons ajouté un tissu nylon élastique, cousu autour des tiges côté trappe, pour faciliter l'éjection et éviter que le parachute ne s'emmêle autour des tiges.

Les trois semaines entre la RCE 3 et le C'Space ont permis de terminer l'électronique, d'apporter ces ajustements et de nous présenter au C'Space avec un projet que nous estimions prêt au lancement.

L'objectif était clair : se qualifier rapidement pour le lancement et effectuer un vol nominal, c'est-à-dire un lancement réussi, suivi de l'ouverture de la trappe et d'une redescente contrôlée sous parachute, tout en récupérant :

- la vidéo de la caméra 360°,
- les données de la carte roulis (gyroscope, déroulé du vol, état de la fusée, etc.) sur carte SD.

Le temps supplémentaire était destiné à peaufiner l'esthétique de la fusée et à échanger avec les autres clubs et bénévoles de Planète-Sciences pour découvrir des solutions techniques inédites et enrichir nos connaissances.

Figure : Providence avant le départ pour le C'Space

Difficultés et solutions

À notre arrivée au C'Space, nous avons dû résoudre plusieurs problèmes pour garantir le bon déroulement du vol.

1. Système d'éjection

La légèreté de la fusée, due au treillis et à la peau affinée, a provoqué une instabilité de la trappe, menaçant de déclencher l'éjection par accident. Pour y remédier, des cales en plastique collées ont été ajoutées en bas de la trappe afin de stabiliser son mouvement. Les trous d'accès aux cartes électroniques en haut et en bas de la fusée ont été partiellement bouchés avec du scotch pour éviter les infiltrations d'air.

Un autre problème concernait la patte du servomoteur, qui se bloquait sur la bague en PLA lors de l'ouverture. La solution combinait :

- des piles neuves,
- un ponçage des pièces pour faciliter le glissement,
- et du lubrifiant (huile silicone).

De plus, les ressorts ont été remplacés par des modèles plus faibles pour réduire l'effort nécessaire au servo, garantissant ainsi une éjection fiable.

2. Bloc moteur

Un contrôleur du C'Space a signalé que le PLA du bloc moteur pouvait ne pas résister à la chaleur du lancement. Bien que les températures restent dans des limites acceptables, une plaque de poussée circulaire en aluminium a été ajoutée au fond du compartiment moteur pour renforcer l'isolation thermique.

Le bloqueur moteur, initialement difficile à manipuler avec les gants des pyrotechniciens, a été transformé en clapet ergonomique, facilitant l'insertion du propulseur tout en maintenant le moteur en place.

3. Expériences

La caméra 360° Ricoh Theta S présente un risque de surchauffe après environ 10 minutes d'utilisation, stoppant l'enregistrement. Pour y remédier, nous avons stocké la caméra au frigo avant de l'installer sur le pas de tir et limité son allumage au moment du montage de la fusée.

Pour l'expérience de contrôle du roulis, des problèmes de contact entre les engrenages et les supports des ailettes sont apparus. Ils ont été résolus par

consolidation avec colle chaude et scotch pour réduire le jeu et assurer un engrènement correct.

Enfin, pour sécuriser le lancement, une corde a été utilisée pour arracher les câbles jacks des cartes Arduino lors du décollage. Elle passe par les deux jacks et se fixe solidement sur la rampe de lancement.

4. Esthétique

L'aspect visuel de la fusée a été amélioré avec plusieurs bombes de peinture et des stickers personnalisés. Les autocollants ont été conçus avec une imprimante spécialisée et le logiciel Silhouette Studio, permettant de découper des motifs sur des feuilles autocollantes sur mesure.

Figure : Zone de travail ESO avec Providence, Velocity Raptor et ESL-1

RESULTATS

Lancement

Après avoir résolu l'ensemble des pannes et obtenu la qualification auprès des contrôleurs du C'Space, nous avons pu procéder au lancement de notre mini-fusée Providence.

Figure : Qualification réussie le jour 3 du C'Space (08/07)

Le mercredi 9 juillet 2025, vers 11h30, la fusée a décollé avec succès : le vol a été nominal. Le propulseur a fonctionné correctement, la trappe s'est ouverte peu après l'apogée, le parachute s'est déployé sans difficulté et la descente s'est déroulée en douceur, jusqu'à l'atterrissage à proximité du pas de tir.

L'apogée a été estimée à environ 200 mètres. La fusée a été récupérée en état de marche, avec seulement quelques dommages mineurs : un aileron fendu, une ailette cassée, un léger décollement des tiges filetées et la demi-sphère de la coiffe désolidarisée du tube. Malgré cela, la structure est restée globalement intacte, et l'électronique a parfaitement fonctionné.

Figures : Lancement de Providence le 09/07

C'Space 2025

Figures : Récupération – Fusée sans la peau

Caméra 360°

Une fois la fusée récupérée, nous avons extrait les données de la caméra. Celle-ci a enregistré près de 10 minutes de vidéo, depuis son montage sur la fusée au pas de tir jusqu'à l'atterrissage. On y distingue clairement l'ensemble des opérations : la préparation par les pyrotechniciens, le décollage, la phase propulsive, l'ouverture de la trappe, le déploiement du parachute et enfin l'atterrissage.

La caméra n'a pas surchauffé durant le vol, ce qui valide notre solution de refroidissement. La surchauffe n'est apparue qu'après l'atterrissage, confirmant la pertinence de la chronologie mise en place.

Un lien vers la vidéo 360° complète est disponible ici https://app2.ricoh360.com/viewer/d3f5bd34-29a2-4a7e-bf6a-1223efee44a7

Figures : Vue depuis la caméra au pas de tir - Vue en vol

Contrôle du roulis

Les données du gyroscope, récupérées via la carte SD et traitées sous Excel (captures en annexe), confirment l'efficacité du système de stabilisation en roulis.

Au décollage, durant la phase propulsive, la fusée prend rapidement de la vitesse en roulis. Mais dès l'extinction du moteur et l'activation du système, cette vitesse diminue progressivement, jusqu'à presque s'annuler. Le déploiement du parachute entraîne logiquement une phase plus instable, avant un retour à zéro une fois la fusée posée au sol.

Il est à noter que l'amplitude des ailettes avait volontairement été limitée pour des raisons de sécurité, réduisant l'effet global du système. Malgré cela, le résultat valide clairement le fonctionnement de l'expérience : le contrôle en roulis a bien été assuré.

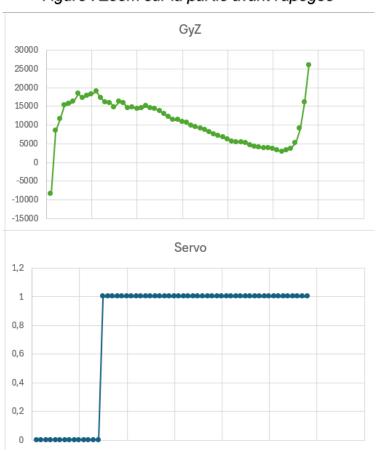


Figure : Graphiques du roulis (Servo à 1 : Système actif)

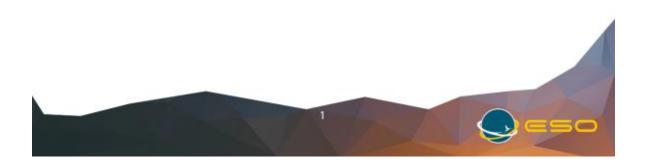
Figure : Zoom sur la partie avant l'apogée

ANNEXES

Figure : Document de définition

Document de Définition Mini-Fusée

1. Présentation du Projet

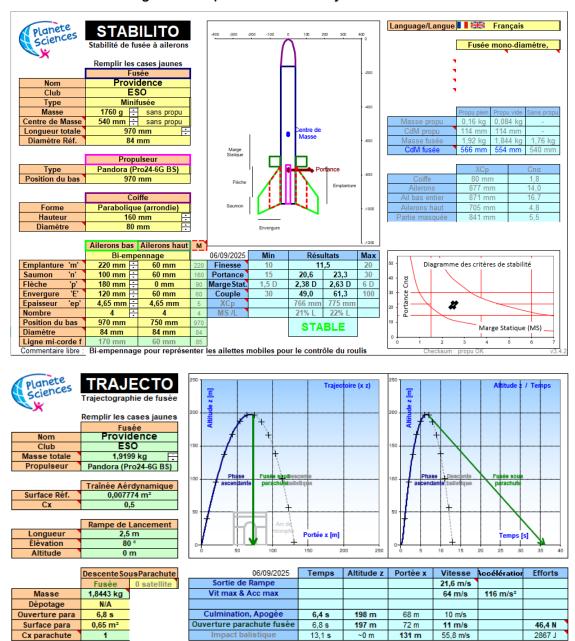

- · Nom du projet : Providence
- Description succincte: Le projet consiste à concevoir et lancer une mini-fusée expérimentale, dans le but de faire de jolies images durant le vol.

2. Expérience Embarquée

- Description de l'expérience : L'expérience embarquée sera centrée sur la collecte d'image grâce à la stabilisation de la fusée. Les données seront récupérées grâce à une caméra et stockée dans la fusée avant d'être récupérées une fois le vol fini
- Objectif de l'expérience : L'objectif est de comprendre au maximum la mécanique du vol d'une minifusée et les moyens de stabilisations disponibles pour obtenir in fine des images exploitables.

3. Membres du Groupe

M'Sir Zakaria Note Guillaume Ouaguini Ahmed Nathan Tardif Poncet-Coulibaly Florian



propu OK

v3.4.2

Figures : Captures du Stabtraj de Providence

Calcul de la sur	face d'un parachute
Longeur du bord	
500 mm 💠	
Largeur du coté	*
200 mm 💠	` 1
Surface para	
0,65 m²	
Rayon exterieur	1
450 mm 🗦	
Rayon intérieur	(
30 mm 🗦	(•)

5 m/s

6,7 m/s

29 s

± 146 m

Vitesse du vent

Vitesse descente

Durée descente

Durée du vol Déport latéral

Commentaire libre

0,63 m²

Résultats détaillés	Temps	Altitude z	Portée x	Vitesse	Accélération	Angle
	s	m	m	m/s	m/s²	•
Décollage	0	0	0	0	-	80
Sortie de Rampe	0,23	2,40	0,42	21,6	92,2	80,0
Vit max & Acc max	-	-	-	64	115,5	-
Fin de Propulsion	1,1	45	9	62	14,7	78,1
Culmination, Apogée	6,4	198	68	10	9,8	3,2
Impact balistique	13,1	~0	131	56	5,9	-81,9
Ouverture parachute fusée	6,8	197	72	11	9,8	-18,0
Impact fusée sous para.	36	~0	-74 219	7	9,8	-

Pour localiser la fusée

Noir/Transparent

Orange

C'Space 2025 19

Couleur fuselage/coiffe

Couleur parachute fusée

Figure : Chronologie pour le lancement

				1	_
Temps	Emplacement	Ouvriers	Action	Commentaire	Etat
T -12 heures	Dortoir	Guittaume	Charger Caméra	Commentaire	L
T -12 heures	Dortoir	Guitlaume	Vider la mémoire de la Caméra		╁┼
T -4 heures	FRIGO	Guillaume		Dour éviter une surebouffe	╁∺
I -4 neures	FRIGO	Guillaume	Mettre la Caméra au frigo Recupérer des piles neuves, multimètre et la	Pour éviter une surchauffe	╀┸
T -2h1min	Zone de Travail	Ahmed	glacière		lπ
T -2 heures	Zone de Travail	Guillaume	Enlever peau et coiffe		ΙĦ
T -2 heures	Zone de Travail	Ahmed	Mesurer la tension des piles		Ħ
T -2 heures	Zone de Travail	Ahmed	Vérifier toutes les vis/écrous		ĦΠ
T -2 heures	Zone de Travail	Ahmed	Inspecter les cartes élec		lΠ
T -2 heures	Zone de Travail	Ahmed	Regarder soudures des fils		ΤĦ
T db00-i-	Tona da Yanna il	Al-	February and simulation	Bien vérifier le déclenchement de la trappes et la réalisation de l'expérience (aillete bouge et s'arrete au bon	
T -1h30min	Zone de Travail Zone de Travail	Guillaume	Faire un vol simulé	moment)	╁∺
T -1h20min			Enlever les piles usées		╁╬
T -1h15min	Zone Travail Lancement	Guillaume	Coller et scotcher des piles neuves		무
T -1h10min	Zone Travail Lancement	Guillaume Guillaume	Brancher les piles et tester les cartes		18
T- 1h	Zone Travail Lancement		Eteindre les Cartes		╀∺
T- 50min	Zone Travail Lancement	Guillaume	Ranger le pistolet à colle		무
T- 50min	Zone Travail Lancement	Ahmed	Mettre et visser la peau	E	╀┸
			Direct control of the second	Faire attention à ne pas emelé et à bien	۱_
T- 40min	Zone Travail Lancement	Guillaume	Plier le parachute et fermer la trappe	le plier	╀∺
T- 40min	FRIGO	Guillaume	Mettre la Caméra dans la glacière		10
			Prendre scotchs, ciseaux, tournevis, fiche de contrôle, glacière, fils jack, corde accroche fils,		
T-35min	Voiture	Ahmed et Guillau	pince pour fil jack et Fusée et coiffe		
T-30min	Voiture	Ahmed et Guillau	Déplacement à l'aire de lancement	Avec la Fusée c'est mieux	
T-25min	Zone Travail Lancement	Ahmed et Guillau	Arriver sur l'aire de lancement	•	
T-20min	Zone Travail Lancement	Ahmed	Visser la caméra		
T-20min	Zone Travail Lancement	Guillaume	Mettre les fils jack	Bleu en bas, Marron en haut	
T-20min	Zone Travail Lancement	Ahmed	Prédécouper le scotch		$\overline{}$
			Prendre Fusée, coiffe, Tournevis, pince fil jack, fil		
T-18min	Zone Travail Lancement	Ahmed et Guillau	jack en rab		
T-17min	Zone de Rampe	Ahmed et Guillau	Aller à la Rampe		
T-15min	Zone de Rampe	Ahmed et Guillau	Mettre la fusée sur la Rampe et l'ériger		
				Fil marron en haut /Fil bleu en bas avec	
T-12min	Zone de Rampe	Ahmed et Guillau	Accrocher les fils jack à la Rampe de lancement	la pince fil	
T-10min	Zone de Rampe	Guillaume	Lancer la caméra		
T-10min	Zone de Rampe	Ahmed	Visser la coiffe		T
T-8min	Zone de Rampe	Ahmed et Guillau	Allumer les 2 cartes		$\overline{\Box}$
T-8min	Zone de Rampe	Ahmed et Guillau	Attendre LED Rouge et verte constantes		n
				150.0	Ŭ
	7		Barrier defendance in the second	LEDs Rouges et vertes allumées	_
T-7min	Zone de Rampe		Dernière vérification visuelle de la fusée	constantes, caméra qui film (led rouge)	무
T-6min	Pupitre	1	Quitter la Zone de Rampe et rejoindre le pupitre	,	닏
T-6min	Zone de Rampe	Lanceur	Aller chercher un propulseur		ᄪ
T-5min	Zone de Rampe	Lanceur	Mettre le propulseur		18
T-5min	Zone de Rampe	Lanceur	Mettre l'inflammateur	Vérification visuelle des LEDs et de la	╀-
T-2min	Pupitre	Lanceur	Aller au pupitre	cam	lο
T-2min	Pupitre				Ħ
T-10s	Pupitre	Lanceur	Décompte final		ᅡ片
T T	Pupitre	Ahmed	Mise à feu		t∺
	rapide	Millieu		l	