

Rapport de Projet MF 21 - Qulbutoké

ESTACA SPACE ODYSSEY ANNÉE 2022 - 2023

SOMMAIRE

Introduction	
Les débuts du projet	4
Conception	4
La fabrication	
La minuterie	
Les bagues & l'ogive	6
Parachute	7
Les ailerons	7
	8
EXPERIENCE	
Tests	
Fabrication	10
C'space	
Résultats	13

Introduction

Ce document a pour but de rendre compte du travail effectué sur la MiniFusée Qulbutoke (MF21) durant l'année scolaire 2022/2023. Le projet est composé de 3 membres :

- Victor BLATZ
- Jacques BONFILS
- Eloi DELAFOSSE.

Nous étions tous les trois responsables du projet MiniFusée de Formation de l'Estaca Space Odyssey (ESO). N'ayant fait qu'une seule Minif avant de devenir responsable de projet et souhaitant rester au courant des problèmes que pourraient rencontrer les groupes, nous avons décidé de réaliser une Minif entre nous. Pour rendre le projet plus excitant et montrer aux groupes ce qu'il est possible de faire, nous avons décidé d'inclure une expérience. Après s'être renseignés sur les différentes expériences possibles, nous en avions retenu deux : MiniFusée bi-étage ou vol de nuit avec un gradient de couleur en fonction de l'altitude. Des discussions avec des membres de Planète Sciences et la vue des images du vol de l'année dernière nous ont conduit à choisir le vol de nuit.

Le projet Qulbutoké a donc été commencé en septembre 2022 et a été lancé durant la campagne de lancement du C'Space 2023 organisée par le CNES et PlanèteSciences.

Malheuresement sont vol ne s'effectuera pas de nuit mais de jour suite à quelques problèmes que nous expliciterons plus tard.

Photo de Jacques & Victor au C'space (Eloi ne pouvant pas s'y rendre)

Les débuts du projet

Contexte

Le projet Qulbutoké est un projet de mini-fusée avec comme expérience intégrée de créer un gradient de couleur grâce à des rubans de LED changeant suivant son altitude. Le vol doit s'effectuer de nuit (sinon c'est compliqué de voir).

Dès le début nous savions que le principal frein à l'avancement du projet allait être le peu de temps que nous pouvions accorder au projet. En effet, le rôle de responsable de projet prenant le dessus sur l'avancement de notre projet, nous nous sommes souvent retrouvés, durant l'année, à ne pas pouvoir avancer car trop occupé à répondre aux questions des différents groupes. La majorité des étudiants, découvrant la fabrication de fusée, avaient de nombreuses questions sur chacune des étapes. Occupés à y répondre, nous avons passé de nombreuses heures à aider les groupes, oubliant parfois d'avancer notre projet.

Le projet mini-fusée de formation de l'ESO pour l'année 2022/2023 est un projet regroupant 8 groupes avec, pour chacun, une mini-fusée à faire voler durant le C'space 2023. Ces mini-fusées se basent sur un modèle de mini-fusées dont la conception est déjà réalisée. Cette méthode avait pour but initial de faire gagner du temps et faciliter l'accès à la construction de fusée pour les nouveaux membres de l'association, qui sont complètement, pour la plupart, étranger à leur réalisation.

Cette méthode demande alors une implication très soutenue des responsables de projets qui sont pour ces nouveaux membres, leur guide pour la réalisation d'une mini-fusée.

S'ajoute à cela, un nouveau partenariat avec l'EPF (école d'ingénieur), que nous devions aussi aider à réaliser leur fusée. Ce fut un réel défi pour nous, notamment à cause de la distance séparant nos deux écoles, ainsi que les disponibilités et les connaissances qui sont très différentes.

C'est dans ce contexte que nous devions réaliser Qulbutoké, compagnon inconditionnel de la Team Rocket.

Conception

Comme énoncé précédemment, cette mini-fusée se base sur la conception d'une mini-fusée que l'on peut nommer de « générique ». Cette dernière est composée d'une peau structurante en fibre de verre, une minuterie analogique et de bagues métalliques. Cependant cette dernière partie sera rapidement remise en cause dû à une impossibilité pour l'ouvrier de notre école de réaliser 24 bagues (3x8 groupes) en un temps relativement court. De ce fait la fusée sera composée d'un seul bloc (aucune coupure) avec des bagues intérieures faites en impression 3D (PLA).

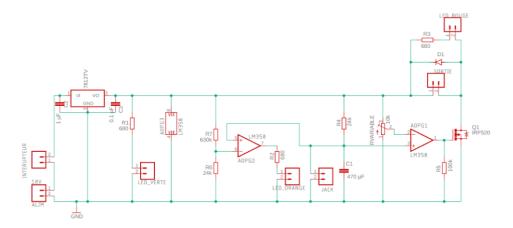
Bien que la fusée soit majoritairement déjà imaginée, certaines petites parties de cette dernière reste libre : la forme des ailerons (conformes suivant le Stabtraj) et le design. (ce n'est pas beaucoup mais c'est déjà ça).

La fabrication

La fabrication des différents éléments de la fusée (bagues, minuterie, ogive, ailerons et parachute) est une très grosse partie de la fusée (30% environ à vue de nez). Ce n'est néanmoins pas la plus complexe et celle qui doit prendre le plus de temps. Nous reviendrons dessus plus tard mais l'intégration n'est vraiment pas à négliger dans le planning d'une fusée. La fabrication est d'autant plus accélérée lorsque la fusée et ses systèmes sont connus, semble bons et sont modélisés. C'est pour cela qu'il sera mieux à l'avenir de beaucoup plus s'attarder sur la conception pour lever tout doute lors de la fabrication car des changements en cours de route font perdre beaucoup de temps inutilement.

Cette partie sera dans un ordre chronologique (comme tout le rapport), l'expérience cependant sera séparée comme explicité précédemment.

Réalisation du corps


La conception étant déjà réalisées nous commençons dès Octobre/Novembre à nous atteler à la réalisation de sa structure extérieure, le corps en fibre de verre. C'est une étape très importante, car elle permet de s'initier à la fabrication de composite au sein de l'ESO. Ayant déjà participé à la réalisation du corps de la mini-fusée Kim Jong Boom l'année précédente, ainsi qu'à la fabrication de tous les autres corps des mini-fusées de cette année, nous avons sans trop de problèmes à réaliser celui de Qulbutoké. Il faut tout de même noter que sa taille est plus grande que celle imaginée lors de la conception car nous avions besoin de place pour y insérer l'expérience.

C'est ainsi qu'après cela nous étions déjà à Noël, la conception étant certes déjà faites nous avons peu avancé sur la fabrication bien que nous connaissions déjà tout. Au niveau de l'expérience une partie entière lui sera consacrée car elle était très indépendante du reste de la fusée. Avec le recul nous aurions dû déjà avancer bien plus vite mais les causes du retard sont nombreuses et les citées ne serait pas très utile.

La minuterie

La minuterie, avec l'intégration de la fusée, ont été les 80% du projet. Cette minuterie à la particularité d'être analogique, c'est-à-dire que nous n'avions aucune carte électronique de type Arduino ou Raspberry pour commander le système. Pour cela uniquement des condensateurs, des AOP et des résistances pour créer une minuterie. Comme le reste de la fusée cette minuterie était déjà élaborée, ce qui a créé pas mal de problème pour nous mais aussi les autres groupes car son fonctionnement est relativement obscur pour un estaciens lambda (peu de personne chérisse l'électronique à l'ESO). De ce fait, la réalisation était complexe, d'autant plus que la compréhension l'était bien plus.

La minuterie se présente ainsi : nous avons une alimentation 18V provenant de deux piles mises en série, juste au-dessus se trouve l'interrupteur permettant de mettre sous tension l'entièreté du circuit. Puisque nous utilisons une ventouse électromagnétique, qui doit être alimentée en 12V, nous mettons un abaisseur de tension de type 7812. Aux bornes de celui-ci des condensateurs présents sur la fiche technique de l'abaisseur. En parallèle de tout ceci nous avons notre première LED verte, confirmant la mise sous tension du circuit. Si elle est la seule allumée, alors le système n'est pas armé. On remarque alors deux triangles et et un rectangle correspondant aux 8 PINs de l'AOP (amplificateur opérationnel), LM358, de notre circuit. Ce composant est essentiel dans le circuit. Le premier triangle permet de savoir quand le Jack est retiré. Lorsque ce dernier l'est la LED orange s'allume, montrant alors que la minuterie est en route. Pour que la ventouse soit alimentée le deuxième triangle a pour but de comparer les deux valeurs de tension données à l'entrée 2 et 3. La valeur de référence est modulable par la résistance variable présente juste en amont. A la sortie 3 nous retrouvons le gros condensateur de 470µF qui se charge lorsque la LED orange s'allume. Une fois la tension de référence dépassée par l'entrée 3 cela envoie une tension dans le MOSFET qui ferme la partie du haut du circuit permettant à la LED rouge et à la ventouse électromagnétique d'être alimentée. On remarquera une diode juste à côté de la ventouse, c'est une diode dite de roue-libre pour éviter tout type de problème. La formule pour régler la résistance variable suivant le temps voulu est celle-ci : $R_{var} = R*(1-e^{\frac{-\tau}{R*C}})$.

Les bagues & l'ogive

Les bagues ont été un assez gros problème qui a fait perdre pas mal de temps. En effet, en tenant compte de la modélisation 3D sur SolidWorks nous devions avoir trois bagues (reprise de poussée, inter-étage et une bague pour l'ogive) fabriquées en aluminium par l'ouvrier de notre école, car nous n'avons pas le droit de manipuler les machines. Mais ce système présente de nombreux inconvénients, notamment le fait que cette personne est seule pour gérer une 10aine d'assos techniques. Nous comprenons alors assez rapidement gu'avec nos 3x8 (ça fait 24 bravo !) bagues, les avoir dans un temps raisonnable allait être complexe. C'est pour cela que nous avons décidé que le corps ne serait pas découpé en plusieurs étages. La bague inter-étage sera alors à l'intérieur de la fusée, la bague de l'ogive sera fusionnée avec l'ogive pour former qu'une pièce et la baque de reprise de poussée sera, comme les deux autres bagues, imprimée en 3D avec du PLA. Nous savions que le PLA est très peu résistant à la chaleur mais après nous être renseigné auprès de certaines personnes de Planète Sciences cela ne devrait poser aucun problème. Pour la bague de l'ogive sa conception en 3D était assez rapide à faire, de même pour celle de reprise de poussée (même modèle avec des épaisseurs un poil plus grandes). Pour l'inter-étage nous avons eu l'idée de fusionner la bague avec la cale à 45 degrés, qui est là pour aider à guider le parachute vers la sortie, cela permet ainsi

une fixation bien plus propre de cette cale qu'auparavant car elle était compliquée à fixer dans la fusée.

Les impressions ont été un succès dès le début pour les bagues. La fixation des bagues se fait par de simples vis M3 (vis standard utilisées dans toute notre fusée). Nous n'avions pas besoin d'insert ou de boulons car les vis tenaient suffisamment sans et même il n'y allait pas avoir de grosses contraintes radiales sur la fusée qui risqueraient de dévisser ces dernières.

Ce système a beaucoup d'avantages relativement évidents : un gain de temps monstrueux, un gain d'argent également, une erreur peut être rapidement remplacée et cela rend étonnamment notre fusée plus solide/rigide car la découpe du corps en plusieurs étages créé des zones de jeu qui peuvent altérer la flèche de notre fusée, son corps en composite fibre de verre époxy est très résistant et est également soumis à moins d'erreurs de découpages pas droit puisqu'il n'y en a pas. Les inconvénients nous nous en rendrons compte lors de l'intégration, car en effet, cela change la manière dont vous faites entrer vos pièces dans la fusée puisqu'il n'y a que deux accès (en haut et en bas).

Cependant, nous avons rencontré un problème lors de l'intégration. Elle se fait généralement, à l'ESO, par des racks sur lesquels sont fixés les supports de minuterie. Une erreur de mesure lors de la conception de l'ogive a considérablement complexifié la fixation des racks. En effet, le diamètre intérieur de la bague de l'ogive était plus petit que la largeur du support minuterie. Ainsi, nous avons décidé de tenter de tordre les racks pour que l'intégration soit faisable mais après avoir réussi, nous nous sommes rendu compte que nous perdions beaucoup de temps à tout monter et démonter dans le bons sens pour que tout rentre. Finalement, nous avons pris al décision de réimprimer l'ogive entière en modifiant le diamètre intérieur. Les effets de cette modification seront constatables dans la partie résultats.

Parachute

Pour nous le parachute a été vraiment simple. Normalement à l'ESO le parachute est cousu par les membres de mini-fusée soit en forme de cercle soit en forme de croix. Heureusement pour nous, nous avons pu réutiliser le parachute de la mini-fusée dont nous étions membres l'année dernière : Kim Jong BOOM (KJB pour les intimes). Son parachute était initialement créé pour soutenir le poids d'une fusée avec une expérience d'environ 1700g environ ce qui nous correspondant totalement sachant qu'une fusée générique sans expérience à généralement du mal à dépasser les 1400g minimum demandé par Planète Sciences.

Le fait d'avoir le parachute déjà fait nous a fait gagner un temps précieux et nous a aussi permis de nous concentrer plus sur l'expérience et de mieux conseiller les différents groupes.

Les ailerons

Pour la conception des ailerons, nous avions une idée générale de la forme que nous voulions leur donner mais les dimensions exactes ont été choisies directement grâce au StabTraj. En effet, cela nous a permis de concevoir les ailerons en prenant comme premier paramètre déterminant, la stabilité de la fusée.

Pour la réalisation des ailerons, nous avons sollicité les ressources du FabLab et notamment la découpeuse laser. La précision et rapidité de la machine reste inégalable. Pourtant, nous avons testé de découper nous-même les plaques d'aluminium de 2mm d'épaisseur mais entre le temps mis pour un aileron et les découpes pas droites, nous avons choisi d'utiliser la découpeuse laser.

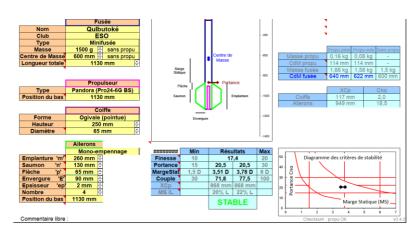
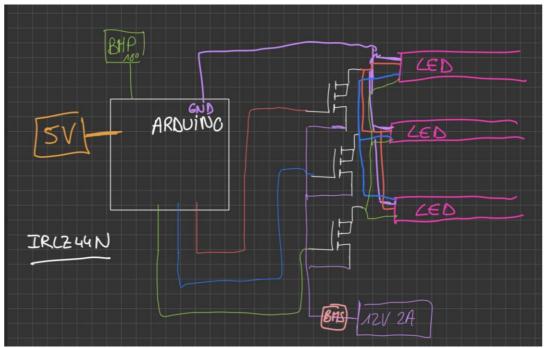


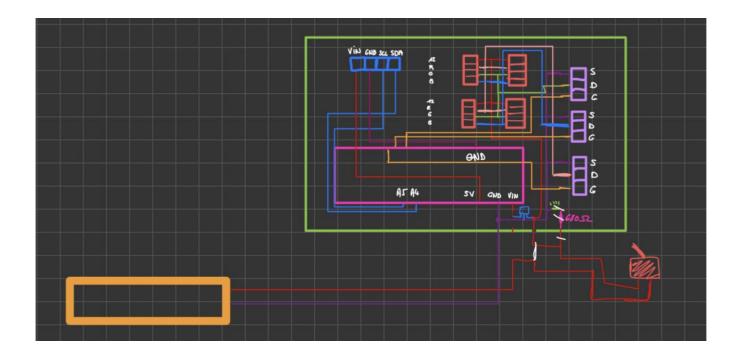
Figure 1: StabTraj final pour la conception des ailerons

EXPERIENCE


Elaboration

Nous allons maintenant parler du gros morceau, l'expérience. Je vais essayer d'être le plus clair et le plus complet possible sur sa conception, fabrication et surtout sur tous les problèmes rencontrés. Pour remettre dans le contexte, le descriptif était relativement simple : créer une expérience composée de LED pouvant changer de couleur dynamiquement suivant la hauteur de la fusée. Certains composants semblaient évidents : un capteur d'altitude, des LEDs et une carte électronique. Mon cheminement était alors simple au début : on branche les LEDs (ruban) et le capteur d'altitude à une Arduino NANO, le tout alimenté par des piles. Malheureusement je me suis alors rendu compte que la vie n'était pas toute rose et que cela allait être un peu plus complexe, en effet, les rubans LEDs, comme beaucoup ont dans leur chambre, doivent être alimentés en 12V or une Arduino, peu importe quel type, ne délivre que jusqu'à 5V. Cependant j'ai alors trouvé après quelques recherches, qu'il existait plusieurs types de rubans LEDs (2) et qu'il existait des LEDs qui peuvent être alimentées en 5V ! Et je peux changer chaque LED individuellement! C'est fou la vie. Sentant l'arnague arrivé, j'ai fouillé dans la documentation de ce miracle et je me rends compte assez rapidement que ce n'était qu'un mirage pour moi. Chaque LED consomme 30mA, sachant que pour notre fusée nous avions besoin de 4 rubans d'environ 1m de long et que pour 1m de ruban LED il y avait une 50aine de LED, le calcul était rapide 30x50=1500mA soit 1.5A pour 1m de ruban soit 6A pour toute notre expérience. La seule solution était alors d'acheter une batterie de voiture ou équivalent, ce qui, je vous le conçois, n'est pas viable. L'idée de prendre ces LEDs dites « adressables » a dû être alors complétement oublié. Il fallait donc revenir sur nos bonnes vieilles LEDs eco+ de kéké. Le problème vient alors de leur alimentation tout en étant contrôlable par un Arduino. Pour les 12V, une solution assez évidente s'est alors présentée : une batterie LiPo 3S car c'est autorisé au C'space. Cependant cela nous obligera à prendre un BMS (Battery Management System), obligatoire lorsqu'une batterie LiPo est utilisée. Une LiPo 3S signifiant 3 Cellules or chaque cellule délivre du 3.7V ce qui nous donne 11.1V, bien vu Sherlock. Certes ce n'est pas 12V mais dans la réalité une batterie comme celles-ci chargées à fond on alors 12.5V, ce qui est largement suffisant.

Maintenant comment contrôler ces LEDs ? Je ne fais pas durer le suspense plus longtemps : les MOSFETs ! En effet le MOSFET est le composant répondant parfaitement à nos attentes, il suffit alors de mettre un MOSFET entre l'alimentation et une couleur de la LED, le tout commandé par un signal sortant de l'Arduino. Il faut cependant se rappeler le fonctionnement de ces derniers, en effet, pour qu'ils puissent fonctionner il faut pouvoir arriver à la tension de



saturation. Comme dit précédemment puisque c'est l'Arduino qui commandera ces MOSFETs nous ne pourrons disposer que de 5V en sortie de carte. La plupart des MOSFETs demandent beaucoup plus pour fonctionner normalement. Mais il existe une espèce d'irresistibles MOSFETs qui peut être commandé par un signal d'Arduino 5V, ce sont les MOSFETs Logic-Level tels que les irfz44n qui ont une tension de saturation (V_{gs}) de 3V et qui peuvent supporter jusqu'à 20V, donc cela rentre parfaitement dans notre cahier des charges.

Premier schéma de l'expérience (peu détaillé, confus et avec une Arduino)

Nous avions donc le nom de l'entièreté des composants de notre expérience, ainsi qu'un schéma fait à la main des différents branchements à effectuer sur une carte à trous (breadboard où tout doit être soudé même les connections). L'idée de faire une PCB n'avait même pas été imaginée (peut-être une erreur).

Tests

Une fois les différents composants reçus, nous étions déjà en mars et la première étape fut de tester individuellement chaque composant, surtout les LEDs pour notamment connaître le courant nécessaire pour pouvoir dimensionner la batterie et l'acheter ensuite. C'est ainsi que nous nous sommes rendu compte que les 5m de LEDs nécessite 1.5A en étant de couleur blanches (c'est-à-dire toutes les couleurs RGB allumées), ce qui ne sera pas notre cas. Il a donc été décidé de prendre une batterie de 1800mAh qui suffira largement et qui n'était vraiment pas très chère.

Ensuite le circuit a pu être testé sur breadboard avant toute soudure, c'est alors qu'après quelques tests nous nous sommes rendu compte que l'Arduino ne communiquait plus avec l'ordinateur, la puce de communication était morte, cela est dû au fait que ce n'était pas un Arduino officiel et que la puce CH340 chinoise ait lâché de manière inopinée sans réelle justification valable. Il a été ensuite testé d'utiliser un Arduino Uno officiel pour transmettre le code à la Nano (Merci Hugo). Le système était fonctionnel mais beaucoup trop complexe, c'est à cause de cela que nous avions décidé de passer sur un Raspberry Pico. Cette dernière avait l'avantage d'être quasiment identique à un Arduino Nano, avec comme différences notoires pour nous que le code devra être écrit en micropython et que l'entièreté des pins sont des pins comparables aux Pins PWM (nécessaire pour contrôler les MOSFETs). Le code n'était pas si compliqué à modifier car il consiste uniquement, pour l'instant, à contrôler les LEDs qui sont alimentées par une alimentation externe. Ce test fut concluant et nous pouvions contrôler assez aisément les LEDs en changeant quelques valeurs du code. Grâce à l'aide de Hugo Allaire (membre de l'association), nous avions un code permettant de créer un code qui créé le gradient de couleur souhaité en python. C'est ainsi que nous nous sommes rendus compte que certaines couleurs, même au maximum de leur puissance, étaient moins lumineuses. Mais cela est corrigeable rapidement en changeant les valeurs dans le code.

Concernant le capteur d'altitude, il a été peu évoqué car son test était assez limité, en effet, une fois branché à un Arduino, nous recevions des informations relativement cohérentes et la variation d'altitude était compliqué à tester ne pouvant pas se balader avec un ordinateur fixe sur une altitude significative et nous n'avions aussi pas trop le temps. Pour simuler cette prise d'altitude nous utilisions la pression ou le plus souvent la température lue par le capteur (il suffisait de mettre son doigt sur le capteur pour augmenter ces valeurs).

Fabrication

Nous étions à 1 ou 2 semaines de la RCE 3, étant pris par les différents autres projets qui n'étaient pas en avance la fabrication s'est faite assez lentement. C'est ainsi que nous commencions à souder tout le système, tel qu'il a été dessiné sur le schéma montré auparavant. En parallèle la batterie a été acheté et la confection du support de l'expérience a pu être faite. Nous allions utiliser le même système que nous utilisons pour la minuterie, seul la forme du support change. Nous avions la batterie au fond du support, la plaque à trou avec tous les composants vissés sur le dessus et le BMS maintenu par un système approximatif également sur le dessus (le BMS ne possède pas de trou pour visser). Une interface a été également conçue pour l'interrupteur et une petite LED (qui, on va le dire ne sert pas à grand-chose parce que si l'expérience marche on le voit par les rubans de LEDs). Ce support sera imprimé en quelques heures en PLA.

Revenons à nos soudures, cela a été relativement rapide à faire. Quelques changements ont

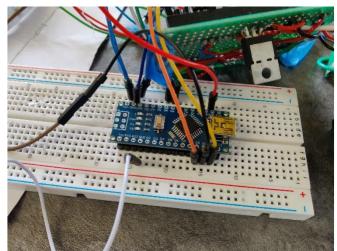
été fait vers la faim pour régler certains mauvais fonctionnements (BMS qui grille car deux fils se sont touchés par inadvertance par exemple). Nous avions dû également ajouter un régulateur de tension à l'entrée de la Raspberry car cette dernière ne supporte par les tensions supérieures à 3.3v. Puisque nous utilisions la tension de la batterie, c'est-à-dire 12V (qui est supportable pour un Arduino mais pas pour un Raspberry), pour alimenter le système et la carte électronique, nous étions obligés de réduire la tension en entrée de la Raspberry. Pour cela nous avons utilisé un 7805. Le système était alors fonctionnel! Nous pouvions changer la couleur des LEDs avec la température. Pour l'instant seul un ruban LED sera utilisé jusqu'au C'space. L'expérience se vissait parfaitement sur son support. Les objectifs ont été atteint avant la RCE 3. Car après la RCE, Victor qui était le seul à travailler sur l'expérience n'était plus disponible jusqu'au C'space. De toute façon seul des réglages de code était nécessaire et nous avions encore pas mal de retard sur la fusée en elle-même. La suite de l'expérience sera expliquée lors de la partie sur le C'space.

C'space

Expérience

L'expérience a été un gros point noir de la fusée. Après avoir fait les derniers tests, changé le code pour qu'aucune couleur soit plus lumineuse qu'une autre, ajouté quelques fonctionnalités de pulsation lors de l'attente en rampe, nous nous sommes rendu compte que les 3 MOSFETs et le régulateur de tension bloquait le passage et ne permettaient pas d'assembler la fusée avec l'expérience. Après notre passage pour la qualification mécanique nous avions décidé de retourner le régulateur de tension et de sectionner les parties métalliques des trois MOSFETs qui sont les échangeurs de chaleur pour réguler cette dernière. Sachant que lors de tous les tests aucune montée en température n'a été enregistré cela a été rapidement notre choix. Nous devions également déplacer un des MOSFET car même en enlevant l'échangeur thermique l'expérience ne passait pas.

Une fois toutes les soudures refaites, nous avions regardé rapidement que les branchements soient corrects et ensuite nous avons branché la carte à l'ordinateur. Cependant bien qu'elle commence la séquence correctement d'un coup plus aucune lumière ne sortait et une petite LED rouge brillait sur la Raspberry. La carte n'était plus reconnue par l'ordinateur : la carte est morte, décédée, inutilisable, kaputt, dead, Nous ne pouvions pas le croire, alors que tout marchait bien il y a quelques minutes notre composant principal rendait l'âme. Ce fut une terrible nouvelle sachant que nous n'avions pas de carte de rechange et que son utilisation dans le C'space semblait rare voire inexistante.


Alors que notre moral était au plus bas, Hugo Allaire (encore lui), nous annonce qu'il a une Raspberry Pico W (c'est la même chose mais avec un module Wifi dont nous n'avons pas besoin) personnelle qu'il peut nous prêter. Nous avions repris espoir, alors que notre vol est prévu pour le lendemain le but fut alors de re-checker le plus précisément l'entièreté du circuit, vérifier chaque soudure, chaque composant, pour que le lendemain seul l'intégration soit à faire. Tout a été vérifié, de fond en combles, l'erreur semblait venir d'un MOSFET dont deux PINs ont été inversé et a alimenté en 12V une sortie de la Raspberry qui a succombé. Viens alors le moment fatidique : le test.

J'arrête le suspens, la carte a à nouveau crashé et est morte. Nous n'étions pas sûr au moment de nous coucher car les symptômes étaient différents de la dernière fois mais le matin le décès a été confirmé. Le sort s'acharnait sur nous.

Une ultime solution était envisageable : l'Arduino, comme prévu au tout début de la conception. Cependant cela signifiait quelques changements cruciaux en peu de temps : changement entier du code de python en C++ (langage Arduino), le changement de quasiment tous les PINs pour les souder sur l'Arduino. Nous devions encore qualifier la fusée (l'expérience seulement), le tout en une journée.

Le matin a été consacré au changement de langage de code, après de nombreuses tentatives infructueuses de convertisseurs nous avions opté pour un changement à la main. A partir de la fin de matinée l'entièreté du circuit a été mis à nue par Alexandre (bénévole incroyablement gentil du C'space), tout a été ensuite resoudé, mis au propre au maximum pour éviter les erreurs.

Système avec Arduino non soudé pour tests

Nous étions 2h avant le vol, le système fonctionnait avec l'ordinateur, nous soudons ainsi le tout et nous remarquons qu'un problème provient du BMS, la tension à sa sortie n'est pas du tout la même qu'à la sortie de la batterie. Après avoir changé de BMS nous avions enfin notre système qui marchait. Les LEDs avaient un peu subit, elles n'étaient pas collées mais le système marchait globalement. L'intégration a été également fait à l'arrache car il y avait beaucoup de câbles et peu de places. Nous étions à 1h du vol. Après avoir réussi l'intégration avec usage de la force (à deux doigts de mettre des coups de maillets pour tout faire rentrer), nous courrions pour rendre aux contrôles où Victor et Corentin (Bénévole dont l'aide et les conseils nous aidèrent énormément) apprendrais qu'il était trop tard pour effectuer un vol de nuit ce soir-là. En effet, 1h30 avant l'heure de décollage initialement prévue, nous apprenions que le propulseur que nous devions utiliser n'avait pas été sorti de son casing et il été désormais trop tard pour effectuer les manœuvres nécessaires.

Pour ma part, ayant dû faire un détour par la chambre pour récupérer des affaires, c'est Cyprien et Stéphane qui m'ont appris la nouvelle.

On ne va pas se mentir, il est possible qu'il y eût quelques larmes ce soir-là. Surtout lorsque l'on nous a annoncer que nous travaillons pour finir tandis que la décision de ne pas sortir notre propulseur de son casing aurait été prise plusieurs heures auparavant.

Nous avons finalement réussi à nous ressaisir et assister aux vols de nuit. Malheureusement, voir la fusée décoller dans le noir ainsi que les incroyables photos, n'ont fait que raviver cette douleur. Finalement, de voir le soutien des groupes que nous avions accompagné nous a fait chaud au cœur.

Résultats

En tout premier lieu, il est important de notifier que Qulbutoké à, malgré toutes les galères effectué un vol nominal le jeudi 20 juillet 2023! Et ce, devant les yeux ébahis (laissez-nous rêver un peu) d'Arnaud Prost.

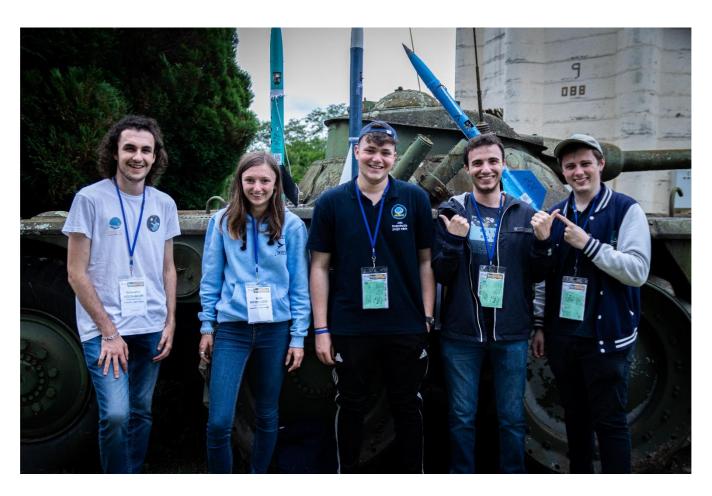
Eh oui on intègre quand même une partie résultats. Pour ce qui de l'expérience, elle fonctionnait durant le vol mais comme anticipé, impossible de les voir. Ainsi aucune photo longue exposition n'a été prise.

Nous retirons de cette expérience qu'il faut écouter le chef de projet. En effet, le mercredi matin, nous avons eu une réflexion sur l'avancement du projet. La partie mécanique étant finie, il ne restait plus que l'expérience à finir. Ainsi, j'ai (Jacques) pris la décision de définir une heure butoir à laquelle si l'expérience ne fonctionnait pas, nous devions tout arrêter et souder les leds que nous allumerions d'une seule couleur mais au moins, le vol de nuit était faisable. Après consultations avec les bénévoles, cette heure avait été fixée. Victor connaissant bien mieux l'expérience, il est resté travaillé pendant que j'assistait aux vols de nos groupes de Minifs. Je contactais régulièrement Victor pour rester au courant de l'avancement. Comme tout avançait, nous n'avons fait que repousser l'heure butoir, encore et encore ... trop. Finalement, ce fut le plus frustrant. Nous avions anticipé le problème et savions exactement ce qui pour pourrait faire que l'on ne lance pas et malgré cela, nous n'avons pas réussi. Cependant, aucun de nous ne se voyait retirer la fusée des mains de l'autre ou abandonner l'expérience.

Pour ce qui est des choix faits pendant les phases de conception et fabrication, on note des impacts directs et visibles. En effet, comme détaillé plus tôt, le rétrécissement de l'épaisseur de la bague de l'ogive aura considérablement fragilisé cette partie de la fusée. On retrouve à cet endroit la seule casse de la fusée. Malgré un impact relativement rapide dû à la taille du parachute peut-être un peu trop petit, la fusée est restée intacte sauf la coiffe.

Figure 2 : Etat final (après vol) de Qulbutoké

Le C'Space aura été pour nous une expérience inoubliable et un rendez-vous auquel nous avons hâte de participer chaque année. Nous sommes très reconnaissants d'avoir pu partagez ce moment avec tous les bénévoles de PlanèteSciences dont le soutien et les conseils nous ont permis de pouvoir voir décoller notre fusée, notre bébé.


Nous tenons à adresser nos remerciements les plus sincères à tous les bénévoles pour leur aide, notamment Alexandre, Julien. Également un immense merci à Stéphane Dulac et Cyprien Hortal pour leurs conseils et surtout leur soutien le mercredi soir quand nous étions au plus bas.

Nous aimerions, pour finir, adresser un merci des plus chaleureux à tous les membres du Projet MiniFusées de l'ESOxEPF sans qui ce C'Space n'aurait pas eu la même saveur. En tant que responsables du projet, nous sommes fiers d'avoir pu vous aider et accompagner tout au long de cette année. 4 vols nominaux sur 5 vols, quelle fierté putain! Le mercredi soir, pour nous remonter le moral, nous nous sommes rappelés tous ces moments avec vous et la fierté d'avoir assister à vos décollages.

Figure 3 : Victor qui ne connaissait pas encore toutes les merdes qui vont lui arriver dessus dans quelques jours et Jacques

CHRONOLOGIE DE LA FUSEE QULBUTOKE MF21 VOL DE NUIT :

Avant le départ :

- Changer les Piles 9v
- Charger Lipo
- Plier Parachute

Sur la ZAS:

- Equipe: Attendre les ordres des organisateurs

- Equipe: Stocher outils sur la fusée

Sur la zone Rampe (T-20):

Equipe : rejoindre la zone rampe

- Jacques : Mettre la fusée en rampe

- Jacques : Attacher initialiseur à la rampe et vérifier qu'il s'arrache facilement quand la fusée

sort de la rampe

- Jacques : Mettre en place le jack

Sur la Zone Rampe (T-10):

- Victor: Mettre interrupteur Minuterie sur marche (ON)

- Jacques : Vérifier que la LED séquenceur verte est allumée constante
- Victor: Mettre interrupteur Expérience sur marche (ON)
- Jacques : Vérifier que la séquence de mise en marche (<u>LEDs</u> expérience Orange, LED Vertes clignotante puis constante, Blanches pulsées jusqu'à allumage moteur)
- Si LEDs Expérience Rouge, éteindre puis rallumer l'expérience
- Jacques : Laisser les outils au Pyrotechnicien

Sur la Zone Pupitre (T-2min):

- Equipe : retourner au pupitre

Sur la Zone Pupitre (T-0min):

- Equipe: appuyer sur le bouton

