
Rapport de projet

IPER

(ISS Parafoill Experimental Rocket)

Ipsa Space Systems

2022

REMERCIEMENTS

Le projet IPER en développement depuis 3 ans n'aurait pas été réalisable sans le précieux soutien de nos sponsors qui nous ont fait confiance. Nous souhaitons donc les remercier en premier lieux.

Nous remercions également Planète science pour l'organisation de cette campagne de lancement C'Sace 2022.

SOMMAIRE

1. Introduction	4
2. Acronymes	4
3. Contexte et Objectifs	5
4. Description du système IPER	5
4.1. Présentation générale	5
4.1.1. Plan de vol	6
4.2. Sous-systèmes mécaniques	7
4.2.1. Partie propulsive	8
4.2.2. Partie électronique	9
4.2.3. Partie expérience	10
4.2.4. Partie coiffe	11
4.3. Sous-système électronique embarquée	13
4.3.1. Chaine d'acquisition et capteurs	14
4.3.2. Réalisation électronique	15
5.3.3.1 Interface extérieure	16
4.3.3. Sécurité en vol	18
5. Résultat du vol et analyse	19
5.1. Résumé	19
5.2. Analyse	19
5.3. Données de vol	Erreur! Signet non défini.
5.3.1. Analyse de la phase propulsive	Erreur ! Signet non défini.
6. Conclusions et perspectives	22

1. Introduction

Ce projet développé par l'association étudiante *Ipsa Space Systems* de l'école d'ingénieur *IPSA* expérimente un moyen de récupération de démonstrateur grâce à une redescente sous GNC parafoil. Le but de l'expérience est de déployer un parapente pour assurer la redescente guidée de la fusée jusqu'à son atterrissage en un point défini. Il s'agit donc d'un démonstrateur technologique qui prend forme en une fusée expérimentale lancée au C'space.

Le projet en développement depuis 2019 n'a pas pu être lancé au C'space 2020 qui fut annulé pour causes de crise sanitaire. IPER a donc effectué son premier vol nominal au C'space 2021 le 23 juillet à 11h59. Un deuxième vol a été tenté pour le C'space 2022 afin de continuer les études.

2. ACRONYMES

IPSA (Institut Polytechnique des Sciences Avancées)

ISS (IPSA Space Systems)

GNC (Guidance Navigation and Control)

IPER (Iss Parafoil Experimental Rocket)

GPS (Global Positioning Systems)

OBC (On-Board Computer)

SSC (Système de séparation coiffe)

SSL (Système de séparation loquet)

SSR (Système de séparation et de récupération)

3. CONTEXTE ET OBJECTIFS

Ce projet s'inscrit dans la logique de développement du projet PERSEUS qui explore différents systèmes de récupération de lanceurs spatiaux. Il constituera les premières expérimentations de ce type de récupération afin de déterminer sa faisabilité et sa pertinence sur des lanceurs à plus grande échelle.

4. DESCRIPTION DU SYSTEME IPER

4.1. Présentation générale

Le démonstrateur IPER est une fusée expérimentale subsonique devant être lancée au C'space. L'altitude d'apogée visée se situe aux alentours des 1100m, altitude qui nous sera suffisante afin de pleinement expérimenter la redescente contrôlée sous parapente. Le parapente déployé va ramener l'intégralité des étages du démonstrateur vers une zone d'atterrissage définie à l'avance.

Le démonstrateur dispose de 3 systèmes de séparations, dont 2 transversaux, afin de déployer 3 voiles différentes.

Le parapente utilisé pour ramener l'intégralité des étages du démonstrateur est une voile contrôlable de 5m² pour 5m d'envergure.

Plusieurs systèmes de secours en vol ont été imaginés et mis en place afin de garantir la sécurité de l'expérimentation en vol.

Figure - IPER en rampe de lancement

Figure – CAO d'IPER sous parapente à l'échelle

4.1.1. Plan de vol

Equipé d'un Pro75, le démonstrateur doit atteindre son apogée de 1088m 15.4 secondes après le décollage.

Par rapport au vol 2021, le vol 2022 a pour but de tester le GNC parafoil complet en atterrissant en un point donné.

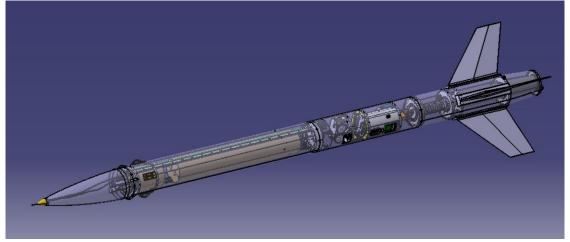
Le déroulement nominal des opérations est le suivant :

- A l'apogée, le démonstrateur se <u>sépare de sa coiffe</u> pour déployer un premier <u>drag chute</u>.
 - La fusée descend depuis l'apogée jusqu'à une hauteur de 500m sol uniquement sous ce premier drag chute. Cette hauteur de 500m sol a été déterminée de sorte qu'en cas de problème durant les opérations parapente, le déport latéral maximal avec le parapente qui dispose d'une finesse conséquente reste relativement faible (< 1500m).
- Après avoir descendu jusqu'à franchir ce seuil de 500m, le <u>drag chute</u> est alors <u>déverrouillé</u> de la structure faisant ainsi office de parachute d'extraction pour <u>sortir le parapente</u> du corps de la fusée.
- Le démonstrateur effectue maintenant ses opérations <u>sous-parapente</u>. L'algorithme de guidage prends le relai pour guider le véhicule jusqu'à son point d'atterrissage.
 - En parallèle de ces opérations, la troisième voile de sécurité peut être déployée à tout moment en cas de détection d'une vitesse verticale trop élevée ou d'une sortie GPS de zone.

4.2. Sous-systèmes mécaniques

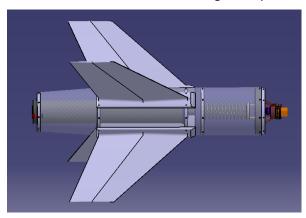
La fusée IPER mesure 3000mm de long avec un diamètre 160mm. La masse à vide est de 14.25 kg et le centre de gravité est situé à 1560mm à partir de la coiffe. La fusée est composée de quatre parties distinctes :

- Partie propulsive 750 mm
- Partie électronique 635 mm
- Partie expérience 1150 mm
- Partie coiffe 550 mm


Les aérostructures de type tubes, ailerons et coiffe sont en matériaux composites. Les tubes et les ailerons sont en structure sandwich carbone et la coiffe est en fibre de verre. Les casings des différentes voiles sont également en carbone stratifié. A l'intérieur, des bagues en aluminium d'épaisseur variables permettent de compartimenter la fusée, assurer les séparations et relier des tubes.

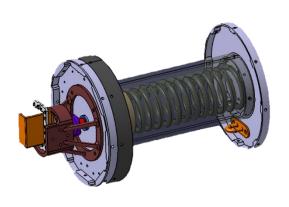
Les tubes sont fabriqués au laboratoire de l'IPSA avec les procédés de fabrication PERSEUS. Les cases parapentes sont réalisées en plusieurs couches de carbone unidirectionnel tout comme le tube interne de la partie expérience.

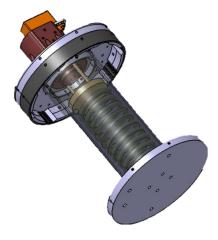
Les bagues en aluminium et d'autres pièces sont usinées au laboratoire sur une fraiseuse 3 axes.


Beaucoup de pièces sont imprimées en 3D avec du PLA et d'autres sont sous-traitées en impression avec matériaux plus résistants comme le nylon chargé ou le PLA chargé carbone.

4.2.1. Partie propulsive

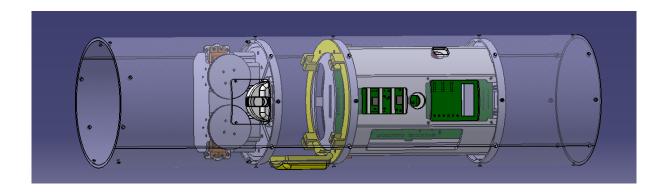
Le tube de la partie propulsive est particulier car il possède un rétreint intégré faisant passer le diamètre extérieur de 160 à 120mm. Tout le système doit être intégré par le haut car les bagues en aluminium font 152mm de diamètre. L'ensemble de guidage du propulseur est composé de la bague culot, la bague ailerons et la bague Reprise de Poussée. Ces dernières sont fixées sur le tube de guidage en carbone et le tout est inséré en une seule pièce par le haut afin de faciliter l'intégration. Les quatre ailerons sont vissés sur les deux bagues depuis l'extérieur.





5.2.1.1 Système de séparation SSR

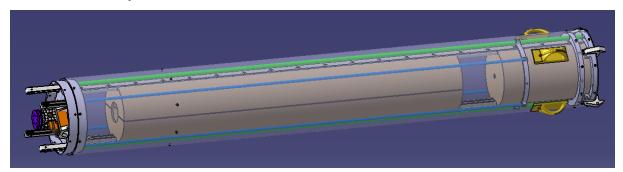
Le SSR est la troisième séparation, il peut être décomposé en deux partie. La partie basse se situe dans le tube propulsif. Les deux parties sont emboitées ensembles et serrées au couple avec une vis en titane.


La partie basse contient une bague en aluminium et un tube en carbone vissé sur la bague dans lequel un ressort est compressé, le tout est un système fermé, seules deux tiges (cf photo partie propulsive) dépassent et transmettent la compression du ressort. Lors de la séparation, ces deux tiges servent à écarter les deux étages de la fusée. Le dernier élément de la partie basse est une bague annulaire en aluminium, non visible ici, dans laquelle la bague de la partie haute vient s'emboiter et assurer le guidage du système.

La partie haute du SSR contient la bague qui vient s'emboiter avec la partie basse ainsi que l'actionneur pour verrouiller et déverrouiller la séparation.

4.2.2. Partie électronique

Ce tube comprend tous les organes de séparation de la fusée. A son extrémité droite on retrouve la partie haute du SSR avec le moteur brushless. De l'autre côté il s'agit des séparations pour la partie expérience.


Le tube électronique fait la liaison entre la partie propulsive et la partie expérience. Il concentre également la case électronique avec la carte mère et l'interface extérieure.

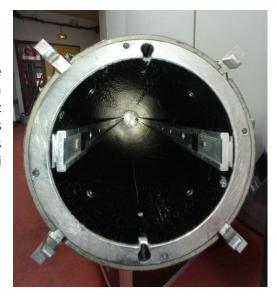
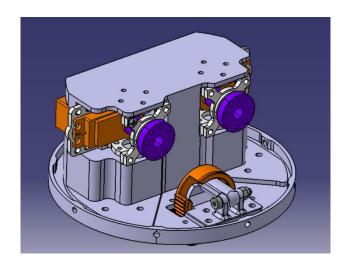


Figure - Case électronique

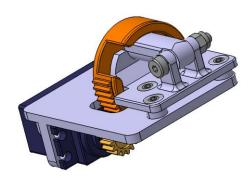
4.2.3. Partie expérience



La partie expérience regroupe le stockage du parapente ainsi que son déploiement. Dans ce tube extérieur, un tube interne de diamètre 125mm est fixé, sur lequel sont vissés deux rails sur toute la longueur. Les demi-coques de la case parapente glissent le long de ces rails, les suspentes du parapente sont fixées sur un patin qui coulissent également dans ces rails.

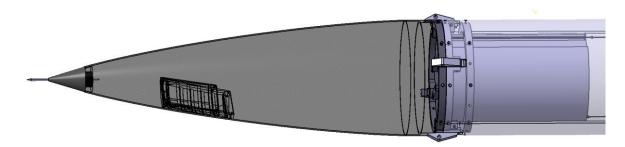
5.2.3.1 Système de contrôle parapente

Les freins du parapente sont redirigés en dessous des coques qui contiennent le parapente et passent à travers la bague de liaison entre le tube expérience et le tube électronique, ils viennent ensuite dans les deux tubes guidés jusqu'au plus proche des bobines dans lesquels ils seront enroulés



5.2.3.2 Système de séparation drag chute

Le loquet retient toute la deuxième phase de vol : la coiffe, le drag chute, la case drag chute ainsi que les cases parapentes sont liés ensembles. Une corde fixée sur le loquet ci-dessous retient leur sortie. Ces cordes passent entre le tube interne et le tube expérience, des petits tubes en carbones de 9 mm assurent le guidage de ces cordes sur toute la longueur du tube expérience.


Lors de la séparation, le servo moteur fait tourner l'engrenage et libère la corde qui part dans l'entonnoir en direction du haut. Les cases parapentes glissent le long des rails, sortent du tube interne et déploient le parapente. Les patins sur lesquels sont fixés les suspentes glissent également et viennent se placer en butée en haut, à fleur du tube expérience.

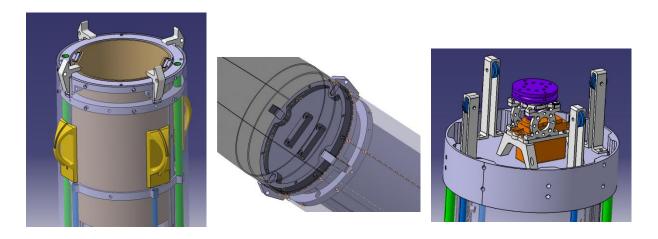
L'ensemble des case parapente avec la coiffe se désolidarise complètement la fusée.

4.2.4. Partie coiffe

La coiffe est équipée d'une bague qui permet sa séparation ainsi que du système pitot.

5.2.3.3 Système de séparation coiffe

Le système de séparation est assez complexe car les contraintes sont fortes. Il n'y a qu'un espace annulaire de 12mm entre le tube interne et le tube expérience. Cela impose de faire un système de séparation sur très peu de place. Il est donc composé de crochet qui dépasse à l'extérieur de la fusée pour gagner de la place. Les crochets sont tirés chacun par une cordelette qui passent sur un guidage avant de rentrer dans le tube et de descendre jusqu'au tube électronique. Les cordelettes sont renvoyées à 90° par des poulies et fixées sur une bobine actionnée par un servo moteur. La rotation du servo tire les cordes en même temps et ouvre les quatre crochets.



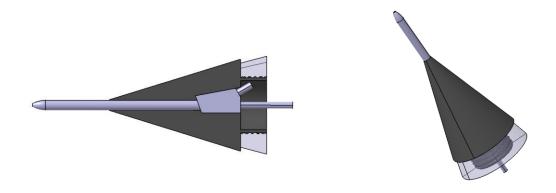
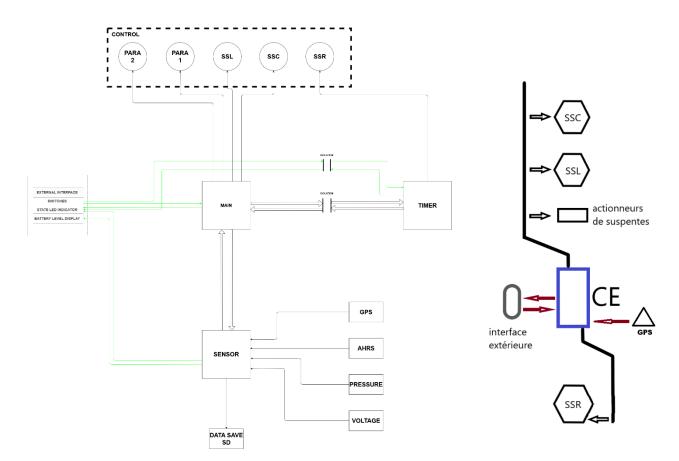

Figure – système de crochet du SSC verrouillant la coiffe

Figure – schématisation du parcours des cordes déverrouillant les crochets

5.2.3.4 Intégration tube de Pitot


La coiffe est découpée au bout pour accueillir le tube de Pitot le système se décompose en deux pièces, la première est dans la coiffe pour former le support, la deuxième vient se visser sur la première. Ces pièces sont réalisées en PLA chargé carbone.

4.3. Sous-système électronique embarquée

Afin de contrôler l'intégralité des opérations au sol et en vol du démonstrateur IPER, nous avons développé notre OBC. Il s'agit d'une configuration carte mère unique sur une base de 3 microcontrôleurs AVR 8 bits ATMega324-PB. Les 3 microcontrôleurs fonctionnent de concert et ont chacun leurs taches respectives :

- Le microcontrôleur TIMER assure le déclenchement de la première séparation d'apogée. La détection d'apogée se fait en démarrant un timer depuis le décollage, détecté grâce à l'arrache d'un jack fixé sur la rampe.
 - Ce microcontrôleur est entièrement isolé électriquement du reste de l'électronique, ne dispose d'aucune communication avec un autre sous-systèmes et est alimenté par une batterie à part avec son propre régulateur DC isolé. Ces mesures de sécurité imposées par le cahier des charges visent à fiabiliser le timer pour assurer la séparation d'apogée davantage critique qu'une autre.
- Le microcontrôleur SENSOR va avoir la charge d'effectuer toute l'acquisition et le traitement de données capteurs ainsi que de leur sauvegarde sur SD. Une fois les données traitées, elles sont formatées dans une trame envoyée en UART au dernier microcontrôleur.
- Le microcontrôleur MAIN va effectuer le contrôle du parapente et des séparations de secours et de drag chute avec les données en vol reçues par le microcontrôleur SENSOR. En plus de cela, ce microcontrôleur peut également sauvegarder les informations et les données de vol sur une SD.

4.3.1. Chaine d'acquisition et capteurs

Afin d'effectuer le contrôle parapente nous avons besoin de la hauteur, de notre position et du taux de chute verticale. Nous avons également ajouté une centrale inertielle pour notre information afin d'avoir l'attitude et les accélérations du système bien que ces données ne soient pas exploitées en vol.

La chaine d'acquisition tourne à 10Hz ce qui est suffisant pour le traitement de données que nous voulons en faire par la suite. De plus l'asservissement du parapente ne demandera un contrôle en boucle fermé aux alentours des 1Hz. Cette acquisition est donc tout à fait dimensionnée par rapports aux besoins fonctionnels.

Les capteurs embarqués sont :

 GPS: module EVM-GPS-RM de Linx technologie pour obtenir notre position 2D. La communication se fait en standard NMEA depuis de l'UART à 10Hz.

De nombreux tests ont été effectués sur ce module pour obtenir des informations quant aux coupures GPS du bridage. Le bridage coupe le signal GPS quand une accélération supérieure à 4g est détectée.

Le résultat est concluant puisque le GPS se configure en hot restart ce qui nous redonne le signal GPS en 16 secondes une fois l'accélération passée ce qui est tout à fait satisfaisant pour notre plan de vol :

```
48.814030, 2.392698, -0.294434, -0.033691, -3.962402,
                                                          < 4g
48.814037,
            2.392693,0.159668,-0.418945,-0.466309,
            2.392637,0.333008,-0.302734,2.084473,
48.814095.
           0.000000,0.017090,-0.516113,-5.556152,
0.000000.
           0.000000, -0.046875, 0.124023, -0.977051,
 0.000000,
0.000000.
           0.000000, -0.028809, -0.007324, -1.017578,
                                                        > 4g donc
 0.000000.
            0.000000,-0.061523,-0.036133,-1.013672,
                                                        coupure de
 0.000000.
           0.000000,-0.068359,-0.018555,-1.004883,
            0.000000, -0.070313, -0.010742, -1.026367,
 0.000000,
                                                        la réception
            0.000000,-0.081543,0.015625,-1.063965,
 0.000000,
 0.000000,
            0.000000, -0.074707, -0.069336, -1.011230,
 0.000000.
            0.000000, -0.020996, -0.006348, -1.059082,
0.000000,
            0.000000, -0.055664, -0.000977, -1.004395,
0.000000,
            0.000000, -0.071289, -0.009277, -1.036133,
0.000000,
           0.000000, -0.066895, 0.027832, -1.043945,
            0.000000,-0.030762,0.012207,-1.033691,
 0.000000.
0.000000,
            0.000000, -0.006348, 0.013672, -1.008789
 0.000000,
            0.000000, -0.019531, -0.015137, -1.034180,
0.000000,
           0.000000, -0.028809, 0.032227, -1.017578,
48.813972.
           2.392830, -0.031250, 0.011230, -1.020020,

    reprise de la réception

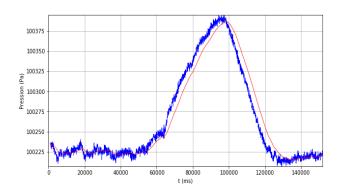
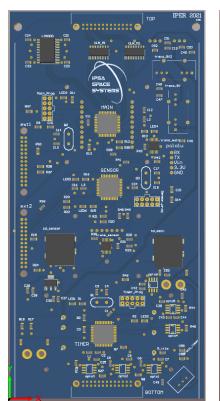
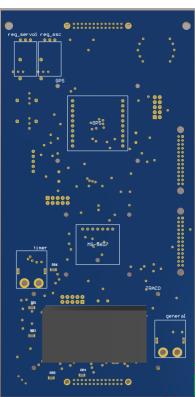
48.813835, 2.393000, -0.019043, 0.015625, -1.013672,
                                                        après 16 secondes
           2.393108, -0.031250, 0.0000000, -1.023438,
48.813770,
48.813740,
           2.393178, -0.037109, 0.026367, -1.002441,
48.813721,
           2.393197, -0.055664, 0.001465, -1.013672,
```

Figure - Test de coupure GPS par accélération

• **IMU**: module UM7-LT de pololu. Cette centrale inertielle en communication UART fournit l'attitude (angle d'Euler) les accélérations et les vitesses angulaires filtrés en interne avec Kalman.

 Baromètre: Le module MS5607 fait office de capteur de pression absolue duquel nous déduisons la hauteur relative. Notre hauteur de référence est calculée à l'allumage en rampe.

Avec un filtrage à moyenne flottante, nous calculons également notre taux de chute verticale en dérivant la hauteur.

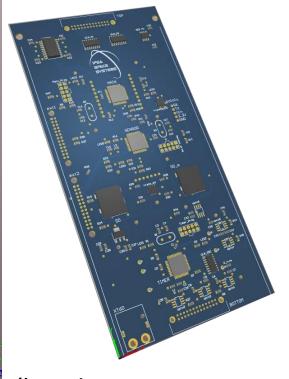

Figure - Variation de pression avec filtrage

Figure - Variation de hauteur filtrée

électronique

5.3.3.1 Interface extérieure

Afin de répondre aux exigences d'interface développées précédemment, nous avons implémenté une interface extérieure, afin de contrôler aisément le système et ses sous-systèmes depuis l'extérieur. Celle-ci se compose de :

- ❖ 4 interrupteurs 2 positions afin de contrôler chaque séparation.
- Une clé afin de mettre sous-tension l'intégralité des systèmes électriques.
- Un PCB faisant office d'interface comprenant :
 - Indicateurs lumineux pour chaque sous-système :
 - SSR : état de la séparation transversale basse
 - SSC : état de la séparation de coiffe
 - SSL : état de la séparation loquet
 - Timer : témoin de démarrage du microcontrôleur timer.
 - Launch: témoin de lancement détecté par arrachage du jack.
 - Supply: témoin lumineux de mise sous tension.
 - GPS: témoin de la réception de données GPS.
 - Un afficheur 7 segment affichant le niveau de tension des batteries et utile à l'affichage d'autres état internes.

 Les 3 ports de programmation ISP de chaque microcontrôleur; particulièrement indispensable pour le microcontrôleur autopilote afin de rentrer les dernières informations météorologiques du jour avant le lancement.

Figure - Interface externe

Figure - Interface externe dans le corps de fusée

4.3.3. Sécurité en vol

Le plan de vol présentant des risques dans le cadre d'un lancement au C'space, plusieurs sécurités ont été mise en place. En effet, à cause de la finesse conséquente du système une fois le parafoil déployé, il est important de mettre en place différente sécurité.

Premièrement nous avons défini une hauteur pour le déploiement du drag chute de 500 mètres. Cette hauteur permet au système de ne pas avoir un déport latéral trop important dans le cas où le contrôle en serait perdu en vol.

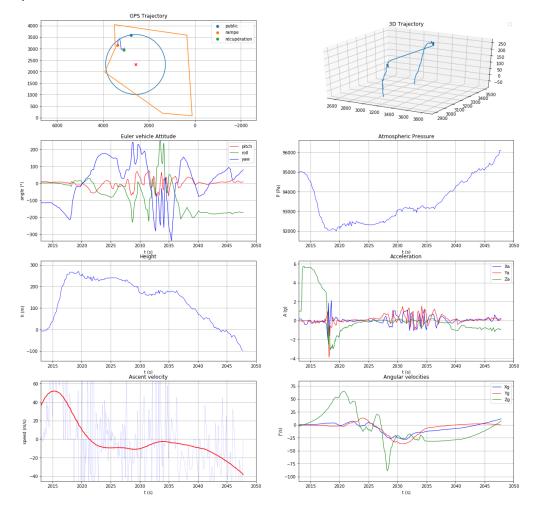
Ensuite plusieurs cas de figure ont été prévu pour l'utilisation de la dernière séparation de secours (SSR). Cette séparation transversale sépare le corps de fusée principale en 2 parties, laissant ainsi se déployer le parachute de secours. Dans le cas où ce parachute se déploierait avec le parapente en fonctionnement, celui-ci devrait opérer de la même façon que les parachutes de secours pour les parapentistes. Ce parachute doit venir gêner et casser la vitesse relative du parapente pour le faire décrocher par l'avant. Une fois le parapente entièrement décroché, le parachute de secours prend le relai en termes de portance et le système descend sous SSR uniquement. Même si le parapente n'a pas totalement décroché, la vitesse horizontale est fortement affaiblie ce qui permet au système de descendre plus verticalement.

Figure – exemple de parachute de secours parapentiste

5. RESULTAT DU VOL ET ANALYSE

5.1. Résumé

Après avoir satisfait les qualifications planète science, le démonstrateur a décollé au C'Space 2022 le 21 juillet. La fusée a effectué un vol balistique suite a une défaillance mécanique en phase ascendante propulsive, éjectant la coiffe en vol après le décollage.

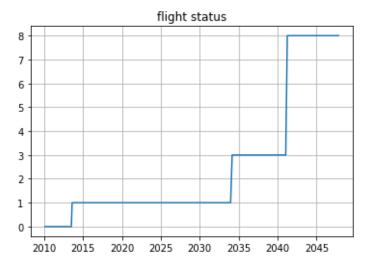

5.2. Analyse

Défaillance :

Le système de séparation coiffe est constitué de 4 crochets retenant la coiffe qui est elle poussée vers le haut par un ressort. Ces crochets sont tirés par des cordes reliées à un système de poulie et servo moteurs. L'accélération fournie par le propulseur à du plaquer la coiffe vers le bas relâchant légèrement la tension sur les crochets qui ont alors pu se déverrouiller grâce à l'accélération appliquée sur eux. Une fois les crochets libérés, la coiffe s'est faite arracher du corps de la fusée par le vent relatif libérant ainsi le drag chute qui est venu s'emmêler autour du corps et des pions de rampe empêchant ainsi son déploiement.

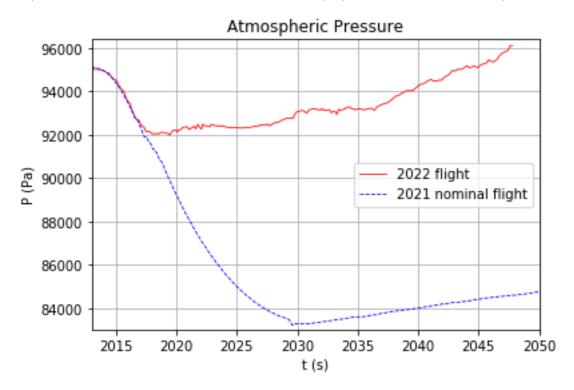
Electronique et analyse de donnée :

L'électronique à fonctionné de manière nominale pendant le vol et a également survécu à l'impact au sol en restant allumée. Les cartes SD ont été éjectées à l'impact mais ont pu être récupérées pour analyse.



❖ T = 2013.502s ⇔ T0 + 0s

Le décollage est correctement détecté par l'OBC qui passe alors en status ROCKET_FLIGHT (1)


♦ T = 2018.182s ⇔ T0 + 4.68s

Le propulseur termine sa phase de poussée. Cet évènement libère la compression de la coiffe contre le corps de la fusée qui est alors éjectée. On peut relever à T0 + 4.68s l'effet de la perte de la coiffe sur plusieurs données du tableau précédent. Sur les accélérations, on voit la composante longitudinale Za

brusquement devenir négative ce qui correspond de manière attendue à l'extinction du moteur. On peut relever ensuite, sur les composantes latérales Xa et Ya ainsi que les angles d'Euler avec le lacet qui change brutalement d'allure, un fort mouvement à cet instant qui marque la perte de la coiffe.

L'influence la plus importante est celle sur la lecture de pression dans la case électronique. La perte de la coiffe a impliqué un engouffrement du vent relatif dans le corps de la fusée ce qui a alors induit une suppression sur le capteur faussant ainsi la mesure de la hauteur par l'OBC. Pour s'en assurer, la courbe de pression du vol nominal 2021 a été recallée et superposée à celle du vol balistique 2022 :

Les deux courbes de pressions coïncident parfaitement jusqu'à T0 + 4.68s à la perte de la coiffe où on peut voir un effet de surpression dans le corps causé par l'engouffrement du vent relatif.

$T = 2028.702s \Leftrightarrow T0 + 15s$

La séparation coiffe est activée par le séquenceur pour l'apogée estimée. Ceci n'a pas d'impact sur le vol puisque la coiffe est alors déjà perdue.

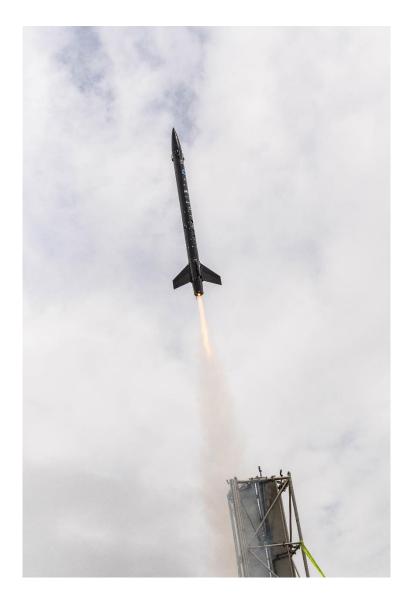
L'OBC passe en statut DRAG_DESCENT (2) comme prévu 5 secondes après l'apogée. Pendant cette phase l'OBC doit attendre les 500m sol avant d'activer la séparation libérant le drag chute et déployant le parafoil. Cependant comme la lecture du baromètre, et donc de la hauteur, est perturbée par la perte de la coiffe, l'OBC mesure une hauteur de 167.39m ce qui est inférieur à 500m.

Pensant être en dessous des 500m sous drag chute, l'OBC active la séparation loquet qui doit libérer le drag chute. Celui-ci étant cependant emmêlé avec le corps de la fusée, il n'est pas libéré. Le statut de vol passe alors en mode parafoil alors que la fusée commence à replonger vers le sol après son apogée.

❖ T = 2041.048 s ⇔ T0 + 27.55s ⇔ T_impact – 6.77 s

L'OBC enregistre une vitesse verticale supérieure au seuil de sécurité de 17m/s et considère la fusée en train de chuter anormalement. A cet instant, l'OBC effectue sa dernière action en envoyant l'ordre d'activation du SSR pour tenter de déployer la troisième voile de secours. La fusée pointant vers le sol et le système de séparation mettant quelques secondes à agir, le SSR est séparé environ 3 secondes avant l'impact mais les deux étages vont continuer en formation jusqu'au sol. A la récupération on a pu retrouver l'étage bas correctement déployé et séparé du reste de la fusée.

Récupération :



6. CONCLUSIONS ET PERSPECTIVES

Le deuxième vol d'IPER, bien que soldé par un échec, fut riche en apprentissage et leçons tirées. Les raisons de l'accident ont pu être entièrement expliquées et analysées avec précision grâce aux données de vol qui ont pu être récupérées.

IPER n'aura malheureusement plus l'occasion de mettre en œuvre son expérience parafoil après cette destruction du démonstrateur, l'équipe finissant leurs études pour une insertion professionnelle.

