

Projet Polaris

Rapport de vol

Pôle Léonard de Vinci Août 2022

Contents

I.	Introduction	2
1.	Contexte	2
2.	Équipe	2
3.		
II.	Partie Mécanique	4
1.	Architecture générale	4
2.	Fabrication	6
III.	Partie Electronique	12
1.	Composants électroniques	12
2.	Circuit imprimé	12
3.	Fonctionnement	14
IV.	Expérience	15
1.	Objectif de l'expérience	15
2.	Déroulé de l'expérience	15
3.	Informations et risques	15
V.	Déroulement du vol	17
VI.	Résultats du vol	18
VII.	Conclusion	19
VIII	Remerciements	20

Figure 1: Photographie de Polaris

I. Introduction

Pour sa cinquième année consécutive, notre association a participé à la campagne de lancement C'Space, un projet de construction et de lancement de fusées étudiantes proposé par le CNES (le Centre National d'Etudes Spatiales) et Planète Sciences. Ce projet consiste à construire intégralement une fusée (de type Minif) respectant un cahier des charges préalablement défini. A son bord, la fusée doit abriter une expérience. Cette année, nous avons décidé de travailler sur un système de descente composé de pales déployables (fusée dite "parapluie").

1. Contexte

Le projet Polaris a débuté lors de l'année académique 2020/2021, et a permis à des étudiants de l'ESILV de réaliser leur projet annuel obligatoire. Cependant, la fusée n'a pas pu être qualifiée lors de l'édition 2021 du C'Space en raison des différents projets reportés, dû à la crise sanitaire de la Covid-19. Le projet a donc été mis en pause, afin de permettre une reconduction lors de l'année suivante.

Le projet a donc continué lors de l'année académique 2021/2022 avec une nouvelle équipe. Etant donné que l'avancement était environ de moitié, la fusée a pris une forme de projet de formation pour des étudiants de première année (ESILV et IIM) afin d'explorer, comprendre et prendre part à la réalisation d'une fusée. Le projet a pu être dirigé par un étudiant plus expérimenté pour les guider.

2. Équipe

Lors de l'année 2020/2021, le projet Polaris était composé de quatre étudiants (avec deux responsables projet durant cette année, étant Corentin CHATIN et Thomas CHATIN):

- Achille AMBROSI (Chef de projet)
- Lou LEMESLE
- Pacôme MANCEAUX
- Clémence FREULON

Lors de l'année 2021/2022, le projet Polaris était composé de sept étudiants :

- Alexandre SLAMA (Chef de projet)
- Victoria MALISZEWSKI
- Elsa LHAYANI
- Adrien BASSEREAU
- Robin BOUCHET
- Romane PREVOT
- Hanna KHOLEEFA

3. Acteurs du projet

LéoFly

LéoFly est une jeune association d'aéronautique et d'aérospatiale fondée en novembre 2015. Elle a pour objectif de rassembler les étudiants du Pôle Léonard de Vinci (à Paris La Défense) autour de leur passion commune. Pour ce faire, les membres du bureau proposent de nombreux projets techniques (réalisation d'un cockpit de simulation à taille réelle, d'une aile volante autonome, etc..) dont certains sont en collaboration avec le CNES (Mini Apterros, ROAR et C'Space) ainsi que des conférences et des visites dans le domaine de l'aéronautique ou du spatial.

• Centre National d'Etudes Spatiales (CNES)

Le Centre National d'Etudes Spatiales (CNES) est un établissement public à caractère industriel et commercial chargé d'élaborer et de proposer au gouvernement le programme spatial français et de le mettre en œuvre.

• Planète Sciences

Planète Sciences est une association à but non lucratif proposant aux jeunes passionnés des activités scientifiques et techniques expérimentales, grâce à différents projets durant leurs études. Cette année, Planète Sciences nous a encadré grâce à 3 réunions techniques et de contrôle, ce sont les «Rencontre Club Espace» dites «RCE». Les bénévoles sont également présents sur le Camp de Ger (lieu de la campagne C'Space pour l'édition 2022) pour nous apporter des conseils et pour effectuer les vérifications techniques imposées par le cahier des charges avant de procéder au décollage.

II. PARTIE MÉCANIQUE

1. Architecture générale

Le corps principal de la fusée est constitué d'un tube de PVC avec un diamètre extérieur de 63 millimètres et un diamètre intérieur de 58 millimètres. Le corps est découpé en trois parties disctintes : une partie basse, une partie intermédiaire (étant les quatre pales de l'expérience) et une partie haute.

A la base de la fusée, nous retrouvons la bague de reprise de poussée qui, couplée avec une languette de fixation en aluminium, empêche tout mouvement vertical du propulseur, un Pro24-6G (Pandora) fourni par le CNES. Pour contrer tout mouvement sur son axe horizontal, nous avons usiné deux bagues de centrage, fixées par des vis pression au niveau de la partie basse. La bague de reprise de poussée et les deux bagues de centrage ont été réalisées en bois. Nous trouvons ensuite la bague de jonction en PLA reliant la partie basse et la partie intermédiaire. Au-dessus de cette bague se trouve le bloc libération des pales pour l'expérience. Puis, nous avons la bague de jonction en PLA reliant la partie intermédiaire et la partie haute. Ensuite, nous retrouvons le rack électronique. Enfin, nous avons la coiffe de forme ogivale au-dessus de la partie haute, avec une hauteur de 123 millimètres et un diamètre de 63 millimètres.

Figure 2: CAO de la fusée

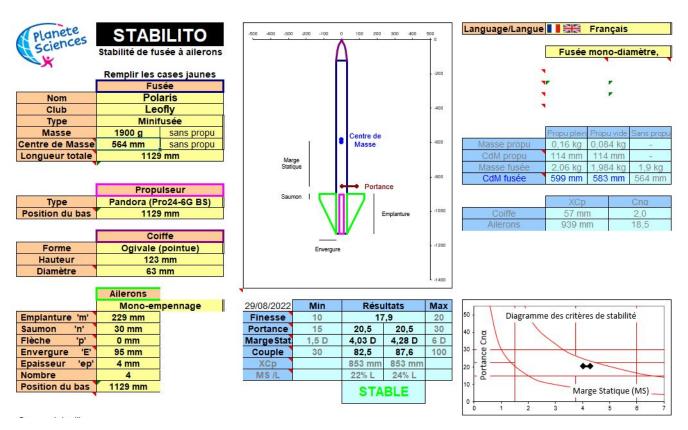


Figure 3: Dimensions et stabilité de la fusée

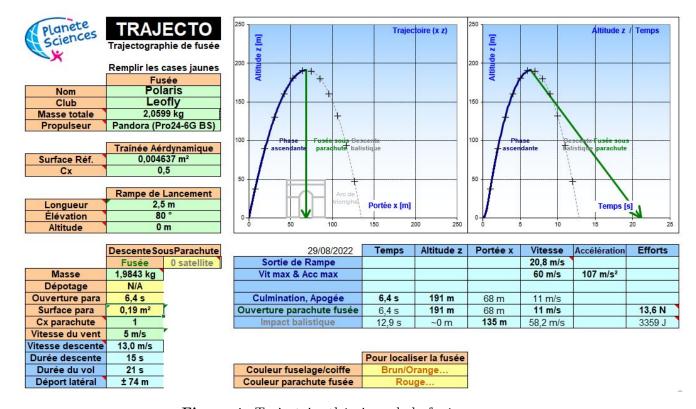


Figure 4: Trajectoire théorique de la fusée

2. Fabrication

• Processus de fabrication

La majorité des pièces ont été réalisées en PLA via l'impression 3D (remplissage à 15% pour chacune d'entre-elles). L'équipe a pu utiliser certaines machines du centre d'usinage de notre école (figure 5) comme une ponceuse, une scie circulaire pour la découpe des pales, une machine-outil 3 axes à commande numérique pour deux pièces se situant dans le bloc libération des pales, ainsi que de multiples outils nécessaires à la fabrication. L'ensemble des pièces de la fusée a été modélisé avec le logiciel de CAO SolidWorks.

Figure 5: Centre d'usinage du Pôle Universitaire Léonard de Vinci

• Ailerons

Les ailerons (figure 6) sont constitués d'une base en bois et sont renforcées par deux couches de fibre de carbone sur les deux faces. Les dimensions des ailerons sont : 229 millimètres d'emplanture, 30 millimètres de saumon, 95 millimètres d'envergure et 4 millimètres d'épaisseur. Ils sont positionnés au bas de la fusée et collés à la bague de reprise de poussée ainsi qu'aux deux bagues de centrage.

Figure 6: Ailerons de la fusée

• Liaison entre la partie basse et la partie intermédiaire

La liaison entre la partie basse et la partie intermédiaire s'effectue avec une bague de jonction imprimée en 3D (figure 7). Le tube interne de la partie intermédiaire s'encastre de 30 millimètres dans la bague de liaison partie basse/intermédiaire afin de réduire au maximum la flèche de la fusée. Le tube interne est aussi fixé à la bague de jonction par quatre vis. La bague de jonction possède aussi quatre compartiments afin d'accueillir quatre charnières (figure 8) qui permettent de maintenir les pales par le bas.

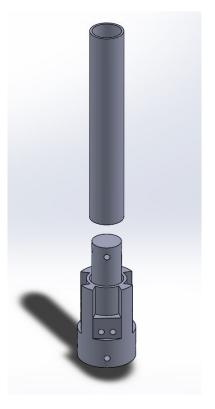


Figure 7: Bague de jonction des parties basse/intermédiaire et tube interne de liaison

Figure 8: Charnières de fixation des pales

• Bloc libération des pales

Le bloc libération des pales est un système composé de plusieurs pièces qui s'emboitent (figure 9). La pièce principale mesure 226 millimètres de hauteur, réalisée en PLA, et possède plusieurs compartiments qui servent à accueillir les pièces de fixation sur les pales (figure 10). Une pièce de fixation est vissée sur chacune des quatre pales. Lors de la phase ascendante, ces pièces de fixation sont contraintes par deux pièces rotatives (figure 11), elles-mêmes attachées à une tige filetée. Lors de la phase descendante, la tige filetée effectue une rotation de 50 degrés (réalisée à l'aide d'un servomoteur situé en haut de la tige filetée) pour supprimer la contrainte des pièces de fixation sur les pales. Ces dernières sont alors libérées et permettent le déploiement de la toile de parachute. On observe plusieurs trous dans la pièce principale du bloc libération qui servent à introduire des vis afin de la faire tenir dans la fusée. De plus, quatre trous situés en bas de la pièce principale permettent d'y loger des ressorts afin d'accompagner le mouvement de libération des pales vers l'extérieur. Enfin, une jupe évite l'engouffrement de l'air dans le système car les pales ne sont pas totalement plaquées au corps.

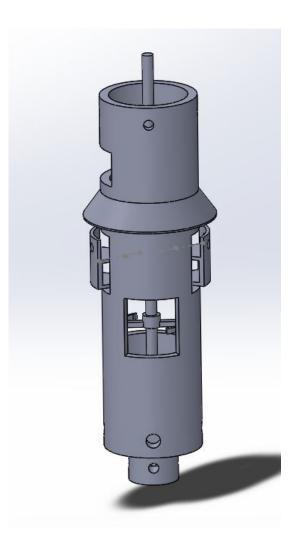


Figure 9: Bloc libération des pales de la fusée

La pièce de fixation (figure 10) est réalisée en PLA. Au total, quatre de ces pièces sont présentes dans le système (une pour chaque pale). Les bords de la pièce ont été épaissis pour réduire le jeu lors de l'encastrement dans le compartiment de la pièce principale du bloc libération.

La pièce rotative (figure 11) est réalisé en aluminum à l'aide de la machine-outil 3 axes à commande numérique, puis taraudée afin de l'introduire dans la tige filetée, elle-même reliée à un servomoteur pour la rotation de 30 degrés.

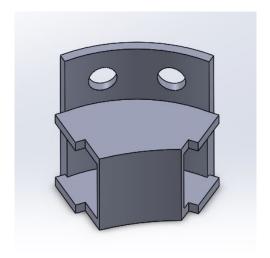


Figure 10: Pièce de fixation du bloc libération des pales

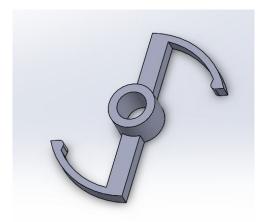


Figure 11: Pièce rotative du bloc libération des pales

Note: On remarquera sur la pièce de fixation que la longueur du segment côté droit sur la figure 10 est inférieure à la longueur de celui du côté gauche. Ce détail technique prend tout son sens lorsque l'on sait que la pièce rotative peut se bloquer dans la pièce de fixation. Avec une différence de longueur de segment, la pale est en mouvement à chaque décalage de degré, et fait glisser la pièce rotative vers l'extérieur.

• Bloc électronique

L'ensemble de l'avionique de la fusée est situé dans le bloc électronique. Ce bloc est constitué de 4 pièces imprimées en PLA, et d'un circuit imprimé. L'ensemble est maintenu par trois tiges filetées de 6 millimètres de diamètre.

Le logement du servomoteur (figure 12) permet de maintenir le servomoteur, utile pour la rotation de la tige filetée de la partie intermédiaire lors de la libération des pales. Le logement du servomoteur est vissé au tube de la partie haute de la fusée afin de maintenir le bloc électronique.

Au-dessus du logement du servomoteur se trouve le circuit imprimé contenant les différents composants électroniques. Ce circuit imprimé est relié à toutes les pièces imprimées en 3D.

Ensuite, nous avons le logement des composants électroniques avec différents compartiments (figure 13). En effet, la pièce comporte un espace vide pour insérer une pile de 9V par le dessus. Un compartiment est réservé au connecteur jack qui sert à la détection du décollage. Une plaque usinée en aluminium peut être insérée par le côté pour permettre la fixation du connecteur jack. Un autre compartiment est quant à lui réservé aux différentes LEDs indicatrices et interrupteurs des systèmes électroniques. Une autre plaque usinée en aluminium peut être insérée par le dessus pour fermer ce compartiment.

Puis, nous avons le logement de la pile 6V (figure 14). Cette dernière ayant un volume assez conséquent, le diamètre interne de la fusée (58 millimètres) a obligé la conception d'une pièce spécialement dédiée au logement de la pile. Le dessous de la pièce est troué pour permettre le passage de câble de la pile vers le circuit imprimé.

Enfin, nous avons une dernière pièce imprimée en PLA qui sert à empêcher le déplacement de la pile 6V (figure 15). La pièce a été percée afin de permettre un stockage de lest si le besoin se ressentait pour la stabilité de la fusée. La pièce est aussi vissée au tube de la partie haute de la fusée afin de maintenir le bloc électronique.

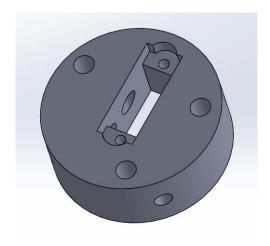


Figure 12: Logement de servomoteur

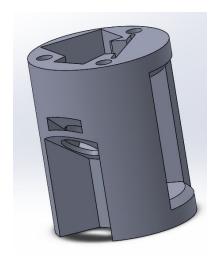


Figure 13: Logement des composants électroniques

Figure 14: Logement de la pile 6V

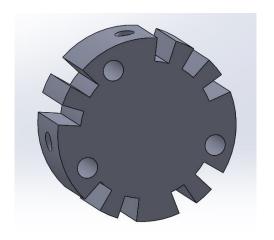


Figure 15: Logement du lest

• Coiffe

La coiffe de la fusée est de forme ogivale (pointue). Sa hauteur est de 123 millimètres et son diamètre est de 63 millimètres. Elle possède un compartiment afin d'y déposer une caméra cubique de dimensions 24x24x24 millimètres.

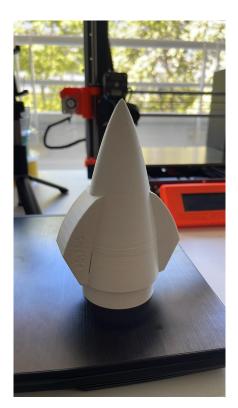


Figure 16: Coiffe de la fusée

III. PARTIE ELECTRONIQUE

1. Composants électroniques

Afin d'obtenir une avionique répondant à la globalité des besoins de la fusée, une liste des composants a été réalisée :

- Pile 9V (x1)
- Pile 6V (x1)
- Carte de développement : Arduino NANO (x1)
- Servomoteur : SH-0254 (x1)
- Convertisseur de tension : L7805 (x1)
- Lecteur micro carte SD: Micro SD Card Module for Arduino (x1)
- Connecteur jack (x1)
- LEDs indicatrices (x4)
- Interrupteurs (x2)
- Résistances (x3)

La carte de développement Arduino NANO a été choisie pour sa simplicité d'utilisation. La pile 9V permet d'alimenter la carte, en passant par un convertisseur de tension. Le moteur possède une vitesse de $0.13s/60^\circ$ avec un couple de 3.9 kg.cm, ce qui lui permet d'être réactif lors de la libération des pales. Il est alimenté par une pile 6V. Un lecteur de carte micro SD permet l'enregistrement des données.

Note: Le lecteur de carte micro SD n'est pas obligatoire pour le fonctionnement de la minuterie.

2. Circuit imprimé

Le circuit imprimé a été réalisé avec le logiciel de conception électronique Altium Designer. Sur le schéma électronique de la minuterie (figure 17), on observe les différents composants énoncés dans la partie précédente. Les trois LEDs indicatrices de la minuterie sont pilotées par la carte Arduino NANO, tandis que la LED indicatrice liée au servomoteur est branchée en série. Par soucis de place, les différents composants ont tous été serrés les uns aux autres.

On peut observer sur les figures 18 et 19 le placement et les pistes du circuit imprimé. Les trois trous de la carte permettent de laisser passer les trois tiges filetées du bloc électronique.

Note: Des borniers ont été ajoutés sur la carte pour permettre une facilité de connexion entre les fils d'alimentation des piles ainsi que les fils du servomoteur.

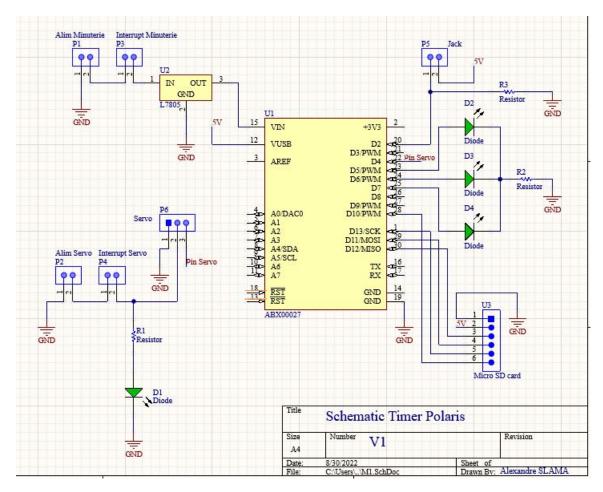


Figure 17: Schéma de la minuterie

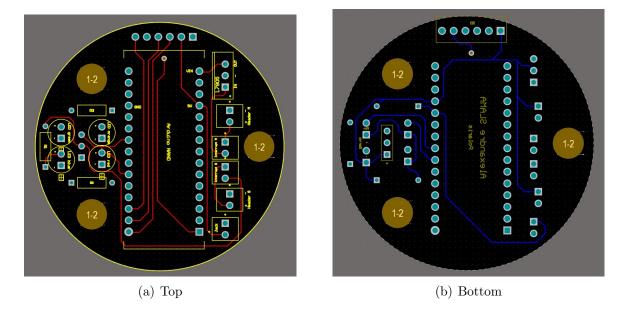


Figure 18: Routage du circuit imprimé

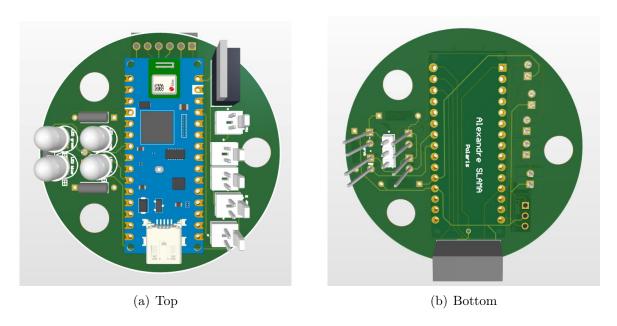


Figure 19: Vue 3D du circuit imprimé

3. Fonctionnement

La manipulation de la minuterie s'effectue avec les deux interrupteurs et le câble jack mâle. L'utilisation est simple car le système comporte peu de composants électroniques.

Lors de la mise en rampe de la fusée, il faut d'abord brancher le câble jack mâle dans le connecteur jack femelle (ce dernier est fixé à la fusée), et attacher le câble jack mâle à la rampe. Ensuite, l'utilisateur peut éteindre l'interrupteur de la minuterie. Ce dernier permet le passage du courant vers la carte de développement Arduino NANO afin de l'alimenter. La LED indicatrice verte s'allume, annonçant l'alimentation de la carte. Une fois l'interrupteur de la minuterie éteint, il faut éteindre l'interrupteur du servomoteur. La LED indicatrice bleue s'allume, annonçant l'alimentation du moteur.

Au décollage, le câble jack est arraché, ce qui met en route la minuterie. La LED indicatrice verte s'éteint, et la LED indicatrice jaune s'allume pendant toute la durée du vol. A l'apogée, la LED indicatrice jaune s'éteint, et la LED indicatrice rouge s'allume. Ceci annonce le déclenchement de la rotation du servomoteur, qui permet de libérer les quatre pales. La fusée peut déployer sa toile de parachute pour freiner sa descente.

IV. Expérience

1. Objectif de l'expérience

Pour la première fois depuis la création de l'association, LéoFly a pour objectif de réaliser une phase descendante avec une toile de parachute fixée à quatre pales déployables. Les fusées emportant ce type d'expérience sont parfois appellées "fusée parapluie".

2. Déroulé de l'expérience

Notre fusée atteint son apogée 6,4 secondes après son décollage. Une fois l'apogée atteinte, la minuterie s'arrête et envoie un signal au servomoteur qui effectue une rotation de 50°. Ce mouvement est accompagné par la rotation de la tige filetée présente dans le bloc libération, ce qui supprime la contrainte fixée sur les pièces de fixation des pales, et ainsi libère les quatre pales.

Suite à la libération des pales, la toile de parachute est déployée et tendue par les pales qui s'ouvrent grâce à la force exercée par le vent.

3. Informations et risques

• Toile de parachute

La toile de parachute possède un diamètre intérieur de 100 millimètres et un diamètre extérieur de 265 millimètres, ce qui fait une surface de 0.19 m² théorique (figure 20). Avec cette surface, la fusée redescend à une vitesse de 13 m/s (figure 4), ce qui est rapide. De plus, la surface donnée par le logiciel StabTraj est théorique car la toile n'est pas parfaitement étirée lors du déploiement des pales. Nous pouvions augmenter la surface de la toile afin de réduire la vitesse de desscente. Cependant, une surface de contact minimale réduit les forces appliquées sur la fusée par le vent afin de réduire le risque de refermement des pales, et minimise les perturbations de trajectoire. De plus, nous avons jugé intéressant de tester la résistance de notre fusée, notamment les bagues de jonction imprimées en PLA. En effet ce test nous permet de tester si les pièces en PLA parviennet à résister à ce choc, ou au contraire si elles viennent à se fragiliser, voire se casser.

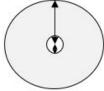


Figure 20: Dimensions de la toile de parachute de la fusée

• Libération des pales

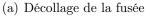
De nombreux facteurs portent de l'influence sur la libération des pales lors de l'apogée, et cela est notamment dû à un risque d'augmentation du bras de levier lors de la rotation du servomoteur. En effet, la toile stockée dans la partie intermédiaire de la fusée peut bomber et déformer les quatre pales. Le manque de rigidité des pales, dû à la flexibilité du PVC, peut les contraindre à une augmentation d'effort du servomoteur. Si l'effort est trop important, le servomoteur n'arrive pas à réaliser sa rotation, ce qui entraine un vol balistique.

De plus, le jeu présent entre les pièces de fixation (figure 10) et les pièces rotatives (figure 11) peut aussi influencer la libération des pales. En effet, un jeu trop important ne plaque pas assez les pales au corps de la fusée, ce qui entraine une déstabilisation. Au contraire, un jeu trop faible contraint les pièces rotatives dans les pièces de fixation, ce qui engendre un bras de levier pour la rotation du servomoteur.

• Fermeture des pales après libération

Après la libération des pales à l'apogée, celles-ci doivent s'ouvrirent entièrement, et rester ouvertes tout le long de la phase descendante. Quatre ressorts situés dans le bloc libération aident au déploiement des pales. De plus, un trou se situe entre la toile de parachute et le corps de la fusée, ce qui aide au déploiement des pales via la prise au vent.

Cependant, plusieurs facteurs peuvent amener les pales à se refermer. En effet, une sur-stabilité ou sous-stabilité de la fusée engendre une descente mouvementée avec l'ogive qui ne pointe pas vers le sol. De plus, le centre de masse doit être au plus bas afin de permettre une trajectoire naturelle de la fusée avec l'ogive qui pointe vers le bas lors de la phase descendante.



V. Déroulement du vol

Le vol s'est effectué le mercredi 20 juillet 2022 à 11:50. La météo était favorable à un lancement de fusée avec un ciel dégagé. Nous avons pu voir parfaitement la trajectoire de la fusée ayant fait un vol nominal.

Lors de la phase d'ascension, la trajectoire de la fusée n'a pas subi de variations. La libération des pales s'est effectuée environ deux secondes après l'apogée réelle. Lors de la phase descendante, quelques instabilités de trajectoire ont survenu, mais les pales sont restées ouvertes et ont permis le ralentissement de chute via la toile de parachute. Nous avons pu récupérer Polaris. Les deux bagues de jonction en PLA ont été cassées suite à l'atterrissage, comme ce qui était attendu.

(b) Descente de la fusée

Figure 21: Vol de la fusée

VI. Résultats du vol

Après plusieurs heures de travail et d'améliorations apportées, l'équipe a été fière de voir le vol nominal de la fusée. Les résultats du vol peuvent uniquement être visuels car l'avionique à bord ne possédait pas de carte d'enregistrement de données.

Lors de la phase ascendante, aucune perturbation de trajectoire n'a été perçue. La fusée a donc été stable lors de cette phase.

La libération des pales a été réalisée environ deux secondes après l'apogée (8,4 secondes au lieu de 6,4 secondes). Plusieurs explications pourraient permettre de comprendre cette différence de temps. En effet, la première raison serait que la durée d'atteinte de l'apogée par le StabTraj est fausse. Cela peut être dû à un coefficient de traîné C_x supérieur à 0,5 (le coefficient de traîné est à 0,5 de base sur StabTraj), potentiellement lié au changement de diamètre avec la jupe du bloc libération. La deuxième raison serait une difficulté du servomoteur à réaliser sa rotation, qui aurait fini par réussir au bout d'une seconde. La troisième raison serait une redescente plus rapide que prévue lors de l'apogée liée au centre de masse assez haut dans la fusée. En effet, la fusée a eu tendance à piquer rapidement vers le sol, et ainsi pris de l'avance sur la durée d'atteinte de l'apogée.

Lors de la phase descendante, la fusée a vécu plusieurs perturbations de trajectoire. Après réflexions, ces perturbations sont majoritairement liées à l'expérience de déploiement de pales. En effet, le système n'est pas parfaitement symétrique. L'inclinaison des pales peut varier de quelques degrés, la surface de contact de la toile peut aussi varier entre les pales. De plus, la direction du vent a aussi perturbé la descente. De ce fait, la fusée n'est pas descendue avec un position constante de coiffe vers le bas, mais les pales ne se sont pas fermées, permettant un ralentissement optimal. Ceci a été permis en partie par une surface de contact de la toile relativement faible.

Lors de la récupération, nous avons pu déterminer des cassures au niveau des deux bagues de jonction. Du fait de leur utilité (bagues de jonction) et de leur matériau (impression en PLA, remplissage à 15%), ces cassures étaient prévisibles. Ce test de résistance a donc démontré que l'impression 3D en PLA ne résiste pas à un atterrissage avec une vitesse de 13 m/s.

VII. CONCLUSION

La mini-fusée Polaris est un projet fait sur deux ans, la première année en tant que projet académique avec l'ESILV, la deuxième année en tant que projet de formation pour quelques nouveaux arrivants à LéoFly. La totalité des pièces a été modélisée sur le logiciel SolidWorks, avec la plupart imprimée en 3D, et certaines usinées en aluminium. L'électronique a été conçue sur le logiciel Altium Designer.

Une expérience de déploiement de pales (ou fusée dite "parapluie") implique de nombreux facteurs mécaniques comme le système de libération des pales, la surface de contact de la toile de parachute, la symétrie des pales en phase libération, le centre de masse avant et après la libération ainsi que la résistance des pales et de la toile face à la force du vent.

Plusieurs pistes d'amélioration peuvent être prises en compte lors des futurs lancements. En effet, une erreur s'est glissée dans le schéma électronique car le pin de contrôle du servomoteur est un pin digital au lieu d'un pin analogique. De plus, une augmentation de la surface de contact de la toile de parachute aurait pu éviter la cassure des deux bagues de jonction, sans trop augmenter les perturbations de trajectoire lors de la phase descendante, ou alors un plus haut taux de remplissage. Enfin, un microcontrôleur seul (par exemple un ATMega328) aurait pu suffir à la minuterie, permettant d'optimiser l'espace restreint.

VIII. REMERCIEMENTS

Dans un premier temps, l'équipe Polaris aimerait spécialement remercier Planète Sciences, le CNES ainsi que tous les bénévoles pour l'organisation de cette édition 2022 du C'Space.

De chaleureux remerciements à l'Association Léonard de Vinci pour avoir soutenu LéoFly.

Un grand merci aux sponsors de LéoFly pour avoir accompagner ce projet.

Mentions spéciales aux différentes associations étudiantes présentes lors de cette édition, plus particulièrement Top Aéro et AéroIpsa.

Un grand merci à Thomas CHATIN, Thomas DEVEZE, Corentin CHATIN, Maxime MERLIN et Aurélie MARTIN pour l'aide apportée sur la fusée.

Merci à Noémie CANET pour l'orthographe.

Sans oublier, merci à Pierre pour l'équipe, t'as vu on a fait nominal.

Figure 22: Photographie de Polaris après le vol