

STRATOSPHERIC BALLOONS IN FRANCE, AN INTERESTING SPACE EDUCATION TOOL FOR JUNIORS, FOR 20 YEARS

Michel Maignan ⁽¹⁾, Amandine Gueurce⁽¹⁾, Cyril Arnodo⁽¹⁾, Natacha Pellet⁽¹⁾, Anne Serfass-Denis⁽²⁾, Nicolas Pillet⁽²⁾

(1), Planète Sciences (2), CNES

May 2011 20th ESA Symposium on European Rocket & Balloon

ANSTJ then PLANETE SCIENCES,

40 years activities in the field of scientific education

History

✓ French non-profit organization created in 1962 (ANCS then ANSTJ), with the objectives to make practice technique and sciences by youth people.

✓ In first step it manage the « Space Clubs» for the manufacture of small rockets by youth with the support of CNES.

- ✓ In the 70s it diversifies its activities with the same objectives: Astronomy, Robotics, Computing, Environment, Meteorology, Balloons...
- ✓ Since 2002, its name is *Planète Sciences*.
- ✓ Today Planete Sciences is a network of 12 French associations. It has also international activities.



ANSTJ then PLANETE SCIENCES, 40 years activities in the field of scientific education

Some figures

- -The Planete Sciences is:
 - 12 associations in network,
 - 75 wage-earners,
 - 1000 volunteers,
- -100.000 youth are concerned each year,
- 600 scientific clubs,
- 300 operations in schools,
- 10 summer camps,

ANSTJ then PLANETE SCIENCES, 40 years activities in the field of scientific education


The approach

- •To give opportunities to youth to conduct attractive projects in safety conditions,
- To use active pedagogic methods,
- To use natural intellectual curiosity of your

Why don't you measure it yourself?

- To develop the team work,
- To introduce scientific process and management project to youth,
- To exchange with scientific community,
- •To present the results.

An example of experiment activities: the Statospheric balloons

- Activity based on the use of professional meteorological balloons,
- Basket mass < 2,5 kg
- •Culmination height = 28 km
- •Flight time = 3 hours
- •Flight distance= some km to 250 km. Free flight pushed by winds
- •Lift-off everywhere in France with an previous information procedure to Aeronautic Authority. Some restrictions near boundaries to suppress the risk of flight above a foreign state.
- •Basket are manufactured with light materials (polystyrene, balsa, plastic, electronic components...)
- •Balloons are in accordance with International Aeronautic rules in the class: "light unmanned free balloon".

An example of experiment activities: the Statospheric balloons

Activity proposed at:

- ◆ Youth Clubs, (friends' teams which group together to practise this activity as a hobby. (20 balloons in 2011)
- ◆Other: Public demonstration, Summer camps, training, (25 in 2011)

UBPE

"Un Ballon Pour L'Ecole"

(100 schools take part in 2011)

UBPE approach

To supply to schools (free of charge)

- A reliable balloon material :envelop, radar reflector, parachute, helium cylinder, telemetry system,
- A adapted information written to be as clear as possible in order to be understood by youth themselves, documentation available on paper format and on line.
- A project control during the scholar year with the help of volunteers (at least 3 interventions in each classroom)
- A legal framework: relations with Aeronautical Authority insurance's.

To supply to teachers and volunteers,

Training courses to learn safety lift-off methods (session of 25 hours)

to learn handle of telemetry system (session of 15 hours)

UBPE organisation

Volunteers + wage-earners who offer time and skills (about 60 people at partial time) A main support: the CNES who gives a financial and technical support

Other support: local communities

Procedures

Documentation

Training

Management

Purchase

To the benefit of:

Primary and secondary schools

High schools

Teachers

(3200 youth take part each year)

UBPE: the classroom commitments

- ➤ To register the project in the frame of UBPE, (school selection)
- ➤ The commitment to respect the « Specification Book », (no lift-off if the basket isn't compliance),
- > To make herself the basket,
- > To take part at 3 progress reviews in the year,
- ➤ The basket has at least one calibrate measurement based on a scientific hypothesis that justify a experiment check,
- ➤ After the flight, the classroom writes a report. (One exemplary for Planete Sciences /CNES)
- ➤ To inform the local press (to invite a journalist for the lift-off day, to send an article to local newspaper...).

In board experiments

The most common sensors:

Temperature, presssure, altitude, humidity camera, intensity light, , flight speed, flight status ...

video, sound, radiometer, GPS tracker, seeds ...

40 % of basket haven't telemetry

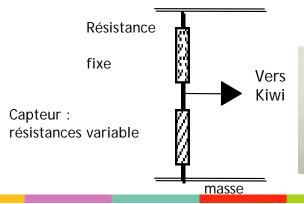
60 % of baskets have a telemetry

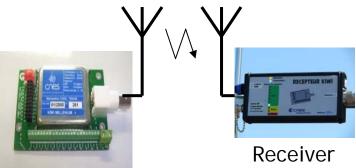
- > Graphic recorder,
- > MP3 recorder,
- Photographic recorder,
- > ...

50 % of basket are recoved by walkers, farmers ... and shake to schools some days or weeks after the lift-off.

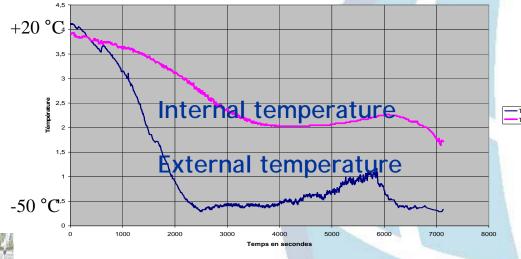
➤ Data transmission thank to Kiwi telemetric system

Telemetry system

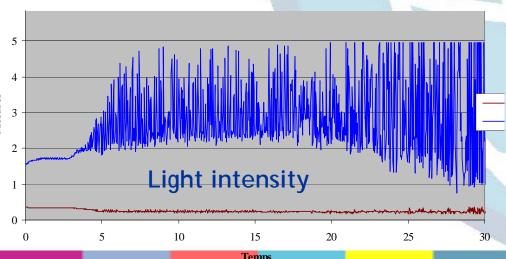

CENTRE NATIONAL D'ETUDES SPATIALES


A small transmitter (VHF) and a portable ground base station

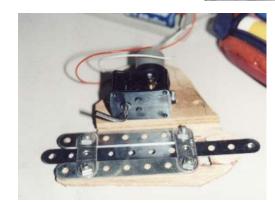
8 analogic channels (0 to 5 volts)
Values transmit in real time each 2 secondes,
Data available in file to post processing with a spreadsheet software

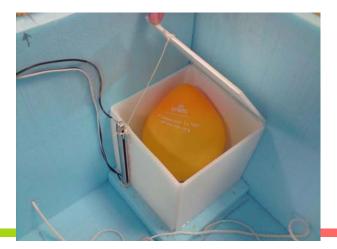


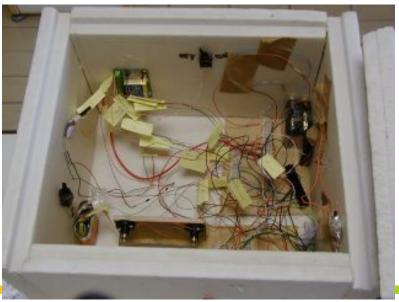
Telemetry system

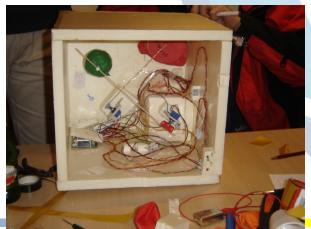

Examples of experimental results

Experiment examples









Examples of baskets

Pedagogic interests

Teachers use balloon activity like an attractive support in relation with official pedagogic scholar programs. A mean to make love the school!

Technical: opportunity to learn how to measure, to cut, to saw, to nail, to iron to connect, to read a data sheet etc. The sensor calibration is directed with care...

Physics, Mathematics: opportunity to deepen some basic physical laws and technologies: Archimedes principle, atmospheric profile, space environment...

Scientific process: Observation, Assumption, Experiment, Results, Interpretation, Conclusion...

Initiation to management project: to define objectives, to respect a schedule, to share tasks, to manage resources, to report...

Writing of texts, Scientific history, Space actuality, Geography, Public talk, Internet research....

CONCLUSIONS

STRATOSPHERIC BALLOONS, AN INTERESTING SPACE EDUCATION TOOL FOR JUNIORS,

Thank to an examplar partnership beetween CNES and Planete Sciences, since 20 years

Thank you for your attention