

ECESAT: a CanSat to analyze the topology of earth
Quentin Allouche, Julie Cristofol, Christelle Reanaud, Aditya Raj, Sarmila Thanarajah

I. INTRODUCTION

HE ECESAT is the first Cansat design by ECE students.
The various missions handle by the device are the

telemetry of the atmosphere by finding the temperature and
the pressure. The Cansat has also to realize a “come back
mission”, which means it has to fly back to the point of origin
(where it started). Finally; it can also capture some images and
do image processing by recreating the geography of the earth.

II. CONTEXT OF DEVELOPMENT

A. Club
The group is composed of five students from major

Embedded System and Transports & Mobility. The
composition of the group will allow us to easily manage the
mechanical and electronic part of the project.

Quentin ALLOUCHE is the project manager and will
follow up the different stages of the project. The team under
Quentin is divided into two subgroups: one of them is dealing
with the communication part, and the other one with
electronic part.
Indeed, Quentin ALLOUCHE and Julie CRISTOFOL work
together on the communication part between the CanSat and
the ground station and on the parachute. The other subgroup
composed by Aditya RAJ, Christelle RENAUD and Sarmila
THANARAJAH will handle the electronic part of the project
with the design of the circuit board.

B. Work plan
The project duration was one year. The first four months

were spent on researches on the existing Cansats: What it
actually is? How to make one? How does it work, the basic
principles? What are the constraints and all the payloads used?
And so on. At the end of the last month, we ordered the
different components of the Cansat to realize the hardware
part. Then the fifth month, we started the software part and the
assembly of the different hardware part. Finally for the last
months, we did all the tests to complete the ECESAT. The
team was divided in two parts: the hardware part and the
software part. In the hardware part, we have designed the
board and then placed the different modules and written the
code to make it works for 3 weeks. In the software part, we
have designed the user interface during one week to send
some parameters to the CanSat and to display the pressure, the
temperature or pictures of earth retrieved by the system. Then
the image processing to recreate the surface of earth took 2
weeks.

III. DEFINITION OF THE MISSIONS
The goal of the team is to create a landing module the size

of a soda can (66mm diameter and 115mm height). The
dimensions will be checked on the day of the competition
thanks to a template in which the mini satellite will be content
to be valid. It also cannot exceed the weight of 350gr. It is an
off-line system that performs scientific missions, which will
be automatically dropped from a balloon or a rocket at a
defined altitude (between 100 and 150 meters).

The team has to choose missions proposed by the CNES

on the specification document. The proposed missions are:

• Atmospheric sounding: temperature, pressure,
etc.

• Development of an XBee Communication: this

mission will allow the communication
between the concept and the ground station.

• Photo/video

• Airbag landing; the mini satellite should go
back to the ground thanks to a parachute but
should also be fitted with airbag to soften
shocks.

T

Detailed design of components

Here is the general window of the GUI, when the
application is executed with Visual Studio 2008:

Figure 1: IHM on ground station

This class “Windows Form” is called “CANSAT Interface”,
and is always visible and placed automatically in the center of
the screen. Its dimension is 1366x768 pixels. The user cannot
modify the size of this window, the size is fixed. If the user
closes the general window, the entire program stops.

Figure 2: GPS coordinate of the target entering and sending

The "Start" button allows to start displaying the received data
and the received video stream, when you can click on it, with
the method VideoCaptureDevice () which registers the driver
for the selected camera and NewFrameEventHandler () which
updates the video.

Figure 3: Xbee communication module

By default when the user clicks the button “Start”, the
“radioButton” is checked which means that the Xbee
communication works. The buttons “Xbee Start” et “Xbee
Stop” can stop or restart the wireless communications and the
“RadioButton” is there to notify visually the state of the
communication.

Dimensions and place of the "PictureBox" are defined in
the code during initialization. This "PictureBox" will allow us
to display the video stream recovered from CanSat live.
We chose to show image processing in real time on the same
"PictureBox" for stream video to have more places to display
other components.

The "ComboBox" displays the list of all video devices
installed on the computer by default, to allow the user to
choose the camera that he wants to use. For this, we use the
methods FilterInfo () and FilterCategory () of libraries Aforge.
In our case, the user chooses the onboard camera on CanSat.

The “Button” FullScreen proposes to the user to display the
video stream in another window, automatically centered and
of modifiable size, where the user can see the original video or
the video with processing of images (explained later) in full
screen in real time.

Figure 4: Sensor measurements received from the can

The dimensions, the place, the text of the 15 “labels” are
initialized in the declaration of variables and won’t change
during the execution.
And the dimensions and the place of the 13 “textBox” won’t
change but the contents “NomDuTextBox.Text() of each of
“textBox” will be updated every 1 ms by the presence of a
timer that starts from the beginning of the execution. The text
displayed in the "textBox" is the measure corresponding to a
sensor.

Figure 5: Processing

For this part, we use library Emgu to execute this king of
processing anf follow some tutorials. All the algorithm is
explain in the program.

Figure 2: Graphics of measurements

In this part, we display graphs from the received data in real
time with the library ZedGraph.

Figure 7: Target on map

Once the user click on the button “Waiting” after entering
GPS coordinate of the target, this coordinate will be
displaying with a red point. Then, when the can will be in the
area of the target, we will see the evolution of the direction of
the CanSat.

A. Scientific Mission
The one and only Goal of CANSAT is to send

telemetry data successfully. That is possible only when all the
sensor system is working perfectly and the transmission is
valid.
Well each and every action performed has an equal reaction,
which tends to complement the whole system and make our
satellite work.

The temperature sensor senses the temperature with the
help of LM35, which in turn is used to calculate the height.
The pressure is also attained using the sensor. And that in turn
also can be used for attaining altitude value using the
expression mentioned. Further the Camera module with the
help of compass for orientation is used to capture images as
per mission requirement and sent to Ground STATION;

The accelerometer is used to calculate the ground impact
while landing. Well the landing is controlled by descent
control mechanism, which in our case is a parachute. GPS is
also used for coming back to exact location given by the jury
before the competition.

B. Free Mission
One of the missions, the free one, is to recreate the

relief from a satellite image. The main idea is to convert the
image to treat in level of gray and to pick up the value of the
pixels and to plot them on a 3D graph to recreate the relief.
Thus we developed an algorithm to make such a processing
(8):

Figure 8: General algorithm of the software structure

 The interface of the processing consists in a Windows
Presentation Foundation (WPF) application which appeals to a
Windows Form (WF) application developed in C# with Visual
Studio 2008. The first one is needed to add a viewport3D to
host the 3D topography with a camera and the second one is
used to load and print the satellite images.

Conversion in level of gray
 Once the picture is loaded, it is immediately converted in
level of gray thanks to the use of the library EmguCV based
on OpenCV which is mainly dedicated to image processing.

Save and salvage the data
 The position in coordinates and the value of the pixels of
the image converted in level of gray are stocked in a table and
then saved in a file .txt. It also contains the dimension of the
image and the numbers of pixels. This file allows the user to
keep a record. Indeed for scientific missions it is always more
sensible to keep records to make any sorts of processing and
to compare the results from all of the attempts.
Thus we take care not to erase files when another saving is
required.
We also take care to not open a file which does not exist thus
avoiding any problem with the software:
Once the file is open, the dimension and the number of the
image are first fetched and then the values for recreating (9):

Figure 9: Extract of the saved file named

Gray_points3Dv1.txt.

The character “|” for splitting allows to get one by one the
value of the pixel with its coordinate and to put them into the
table of Point3D. We also take care to convert to double the
values fetched because from a .txt we only get String.

Recreate the relief
 The relief is recreated from the data fetched on the last
saved file.
The code for this part is developed thanks to an example code
from 3D graphic tutorial available on the internet.

A. Software Behavior for user

 In this part we detail all the user handling of the processing
software.
First the user sees appearing the WPF window when he starts
the application for processing. It contains thee buttons:
“LOAD”, “TOPOGRAPHY” and “QUIT”.

Convert RGB to Level of Gray

Save the value z and the coordinates (x,
y) of pixels in the file

Create a file

Get the Image

START

Close the file

Open the file

Get the values x, y and z

Plot a 3D graph : Topography

END

Close the file

Figure 3: Opening window of the processing software.

Clicking on the button “LOAD” opens another window, a WF
window, (Figure 4 a.). This one contains three buttons too:
“LOAD an image”, “SAVE data”, and “EXIT”. The user can
fetch the desired satellite image to process (Figure 4 b.). Once
it is loaded, it will be immediately converted in level of gray
and visible on the screen.

Figure 4: Opening of the loading window; b) Loading image.

Figure 5: “Load and Save” window with printed images.

Before quitting the window of loading, the user has to save
the data needed to recreate the relief by clicking on the button
“SAVE data”.

Once the user quits the “Load and Save” window, he
comes back on the WPF window. He also can click on the
button “TOPOGRAPHY” and has to wait some seconds to get
results (Figure 6).

Figure 6: Recreating of the relief.

The position of the camera and the direction of the view are
predefined by the developer.

IV. CANSAT ARCHITECTURE

A. Electrical architecture
The architecture of our CanSat is basically composed of four
major subsystems:

• Sensor system
• Communication system
• Power system (Electrical and Power System: EPS)
• Processor system (Command & Data Handling:

C&DH)

a)

b)

Figure 0 : Architecture of the CanSat

B. Mechanical parts
To locate the CanSat during its descent, we will use

the module GPS OEM subminiature “EM-406’’ with
integrated amplified antenna (Erreur ! Source du renvoi
introuvable.).
The format of the output message obeys the NMEA* protocol.
All the frames are made as follow:

$The name of the frame (5
characters),data,data,…,data*hhCRLF

They always begin by the character “$” and always end by hh
= Checksum.
CR: “Carriage return” (ASCII code 13)
LF: “Line Feed” (ASCII code 10)

The following accelerometer will be used to determine the
landing force.

Figure 11: MMA7361L

It needs to sense the acceleration in all three dimensions to
find the net acceleration.

To lead the Cansat, according to some computations
done thanks to parameters retrieved by the accelerometer and
the gps, one Micro-servo motor of 9g and operating at 5v
would be mounted below the camera support module by
screws.

Figure 12: The microservo motor

Camera mounted on top in the support module giving it 2
degrees of motion to rotate in the enclosing provided.

C. Telemetry
The XBee-PRO RF Modules was engineered to meet

IEEE 802.15.4 standards and support the unique needs of low-
cost, low-power wireless sensor networks. The modules
require minimal power and provide reliable delivery of data
between devices.
The modules operate within the ISM 2.4 GHz frequency band
and are pin-for-pin compatible with each other.

The format is not predefined by the Xbee module. It
might be defined by the user according to the data he wants to
get. For our project we need to get latitude, longitude, altitude,
temperature, pressure, direction. We also have the next frame
format:

Temperature-Pressure-Latitude-Longitude-Altitude-Direction

V. CONCLUSION
At this point, the project is at ¾ of it s term. Some design of

the board and some tests remain to finish the CanSat.
In order to finish the project some appointments the

weekend will be done.

